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Abstract

Seepage analyses have mainly been executed using the finite element method; numerical analyses using the finite difference method (FDM) have been
limited to cases where the calculation domains are comparatively simple. This limitation is observed because FDM is considered to be inappropriate for
application in calculations over complex domains. However, by applying the so-called “interpolation FDM (IFDM)”, we can now freely solve two- and
three-dimensional elliptic partial differential equations (PDEs) over complex domains with high speed and high accuracy. By adopting this procedure,
named the boundary polynomial interpolation, all of the numerical analyses of elliptic PDEs reduce to Dirichlet problems over regular domains. This
method is also effective in the calculation of a flow net where mixed Dirichlet and Neumann conditions exist. By giving the coordinate values of changing
points regarding the polygonal line of a domain and boundary conditions, grid generation is automatically carried out and numerical solutions are promptly
obtained. In this paper, the method of saturated seepage analyses with a fixed domain is first formulated and then expanded to unconfined domain
problems, namely, free surface problems. While analytical solutions of the PDE are highly limited, there is an analytical solution for the location of the free
surface in a rectangular dam. The numerical solutions obtained using the IFDM are compared with the analytical ones, and it is shown that the proposed
method has adequate accuracy in practice and wide applicability as a general method of numerically solving seepage problems.
& 2016 The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Under the condition that hydraulic transmissivity is both homo-
geneous and isotropic, the governing equation of steady seepage
problems becomes the Laplace equation. The Laplace equation is also
the governing equation in the study of steady state thermal fields,
electrostatic fields, and potential flows, etc. All of the phenomena over
the fields are commonly clarified by solving the Laplace equation over
each of the domains and boundary conditions. However, in the
seepage problems of geotechnical engineering, the coefficient of
permeability is usually anisotropic, and the governing equation there-
fore changes from the Laplace equation to an elliptic PDE. Moreover,

there are problems of saturated and unsaturated infiltrations; finally, we
may have to simulate the seepage flow as a transient problem. These
problems have been studied by many researchers, and commercial
software applicable to such problems is available, as described later. In
this paper, a new idea is introduced to the field of the seepage-flow
problem; therefore, we will provide a brief history of this topic.

In the era when computational devices were not adequate, the free
surface line and discharge of an earth dam were determined using a
graphical technique. Among the classical approaches to the seepage
problem, the method proposed by Casagrande (1937) is an exemplary
one. He made up flow nets of some typical type earth dams, obtained
the whole configuration of steady state infiltration, and then proposed
a method to estimate the free surface line and discharge in a simple
manner. His method was adopted in Japan and used as a standard in
the design of homogeneous earth dams (ASIB, 1981).
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During and after World War II, various methods of numerical
analysis for a continuum body were rapidly developed, corresponding
to the uprising of computer performance and its popularization. The
finite difference method (FDM) (Shortley and Weller, 1938; Shaw and
Southwell, 1941; Freeze, 1971a, 1971b; Aitchison, 1972; Mahmud,
1996; Bardet and Tobita, 1996; Borja and Kishnani, 1991, Harbaugh,
2005), the finite volume method (FVM) (Darbandi et.al. 2007), the
finite element method (FEM) (Westbrook, 1985; Lam et al., 1987;
Thieu et al., 2001; GEO-SLOPE International Ltd, 2009), and the
boundary element method (BEM) (Leontieva and Huacasib, 2001;
Chen et al., 2007; Chantasiriwan, 2011) were developed and applied to
various engineering problems. The above-referenced literature is limited
to those of the seepage analyses referred to in this paper. There are
other methods which employ adaptive (curvilinear) coordinate systems
in the field of FDM, which are beyond the scope of the paper.

Here, let us briefly describe these methods, noting their key
attributes as found in the literature (Ferziger and Perić, 2002). FDM is
the oldest method for numerical solutions of PDEs. On structured
grids, the FDM is very simple and effective. It makes it especially
easy to obtain higher-order schemes on regular grids. The disadvan-
tage of the FDM is that certain conservation laws are not enforced
unless special care is taken. Furthermore, the restriction to simple
geometries is a significant disadvantage if complex flows are
specified. The FVM can accommodate any type of grid, so it is
suitable for complex geometries. The disadvantage of FVMs com-
pared with FD schemes is that methods higher than second order are
more difficult to develop in 3D. The FEM has an important advantage
in being able to handle arbitrary geometries. The principal drawback,
which is shared by any method that uses unstructured grids, is that the
matrices of the linearized equation are not as well-structured as those
for regular grids, making it more difficult to find efficient solution
methods. In the FVM and FEM, because unstructured grid systems
are used, grid points are generated somewhat arbitrarily, and a
considerable amount of preprocessing time is required. To overcome
this drawback, the BEM and some meshless methods (Takbiri et al.,
2010; Chaiyo et al., 2011) have been proposed. Because there are
many numerical methods, we can effectively choose a suitable one
from a wide range of methods. Among them, however, the FEM is
the most popular and widely used. In the field of seepage problems, a
general-purpose system, e.g., SEEP/W software (GEO-SLOPE Inter-
national Ltd, 2007), was published and was enthusiastically

welcomed: “these analytical methods have now moved from being
research tools to application tools. This has opened a whole new
world of numerical modeling.”

In this paper, the FDM is used to numerically analyze seepage
problems. We make a survey of the literature concerned with the
numerical calculations of seepage problems using the FDM. The
FDM discretization of the Laplace equation was given by Shortley
and Weller (1938). Their scheme, the Shortley-Weller scheme, is a
second-order accurate scheme, and the grid width can be designated
arbitrarily; that is, it can be applied to the calculation over any
irregular domains. Shaw and Southwell (1941) investigated some free
surface problems using a relaxation method. In their method, a
pressure head is adopted as the calculation variable. While the
figurative expression of iso-pressure-head lines seems to be valid,
the method involves no distinct numerical data of the free surface line
regarding the rectangular dam. Aitchison (1972) used the FDM to
determine the position of the free surface of a rectangular dam. “Based
on the semi-analytical nature of Aitchison's solution by using the
complex variable, his data are more believable than other numerical
results (Chen et al., 2007).” The discretization of the governing
equation using the FDM can be linked to an electronic spreadsheet,
such as Microsoft Excel; in particular, if the two-dimensional
calculation domain is a regular one, we can execute an iterative
calculation only by defining a pertinent equation for each of the cells
to obtain an adequately accurate numerical solution. Using a
spreadsheet, Mahmud (1996) executed the calculation regarding the
seepages through the foundations of gravity dams. Bardet and Tobita
(2002) investigated the calculation method regarding the free surface
seepage problems of rectangular and trapezoidal dams. In their
method, a pressure head is adopted as the calculation variable. The
essential concept of their method is the extended pressure method
(Borja and Kishnani, 1991), and the location of the free surface is
obtained as the result of convergence. “The proposed method (using
the spread sheet) has not only educational values because it openly
describes the equations used in solving free-surface seepage problems
but also practical values because it is applicable to many free-surface
seepage problems.” The spreadsheet calculation is indigenous to the
FDM and is not applied to the other methods. One drawback of this
method is that we have to make the spreadsheet separately.
Furthermore, in the calculation of an irregular domain, calculation
accuracy cannot be guaranteed.

Nomenclature

Ci convergence factor, ¼1–10�m

df deletion factor
Ei;j calculation element
Eic;jc convergence judgement element
h total head
lwi;j wall distance factor
m convergence index
ne final calculation step
Nx x direction division number
Ny y direction division number
p pressure head
qC calculated discharge after Casagrande
qn numerically calculated discharge
s stream function

u x direction velocity
v y direction velocity
x horizontal direction coordinate
y vertical direction coordinate
αa acceleration factor of FTCS scheme
αamax analytical MAF
αb acceleration factor of TMSD scheme
αbmax theoretical MAF of TMSD scheme
αbopt OAF of TMSD scheme
αnmax numerical MAF of TMSD scheme
αnopt numerical OAF as non-decreasing solution
α

0
nopt numerical OAF as allowable-oscillation solution

Δx x direction difference
Δy y direction difference
Δt time difference
Λ allowable- oscillation factor
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