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a b s t r a c t

The importance sampling is merged with directional simulation in this paper. A sampling function is
defined on the unit hyper sphere which samples random directions. The directions are sampled around
a direction that aims to the design point. The sampling function uses spherical coordinates to generate
random directions. The method is made adaptive by a closed form updating rule to renew the sampling
parameters. To reduce the number of calls on the limit state function, a root finding procedure is put for-
ward. The proposed method is tested with well-known test problems and its performance is compared
with the conventional directional simulation. The results demonstrate the accuracy and efficiency of
the proposed method for rare event estimation.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Engineering systems involve uncertainties which need to be
considered in order to have a realistic design and analysis. Reliabil-
ity theory provides methods to address this need [1–7]. The relia-
bility assessment in the field of engineering can be encapsulated in
the integral defined as follows [8]:

Pf ðGðxÞ 6 0Þ ¼
Z
GðxÞ60

f ðxÞdx ð1Þ

where x = [x1, x2, . . ., xn] represents random variable vector,
including loads, material properties, and modeling uncertainties.
Moreover, G(x) and f(x) denote the limit state function and joint
probability density function, respectively. The integral is evaluated
in the failure domain where G(x) � 0. The limit state function
returns negative values when the failure occurs and positive, pro-
vided that the system performs safely; accordingly, this function
divides the stochastic domain into safety and failure regions. The
boundary of the two regions is called the limit state surface as
Fig. 1 depicts. Practically, the above mentioned integral cannot
be evaluated directly because the limit state function is not usually
presented explicitly; additionally, high-dimensional practical
problems make it impossible to have an analytical evaluation of

the integral. The numerical evaluation also turns to be more diffi-
cult when the shape of the failure region becomes more compli-
cated. As a result, various approximate [9–13], response surface
[14–16], and simulation methods [17–20] have been presented
thus far.

The first-order-second-moment reliability method (FORM) and
second-order reliability method (SORM) [21] are among the first
attempts to approximate the failure probability. FORM and SORM
approximate the limit state function with first-order and incom-
plete second-order functions, respectively. These methods require
the solution of an optimization problem to find the design point
and its distance from the origin. FORM and SORM are fairly effi-
cient with respect to simple and mild nonlinear limit states, but
are completely inaccurate in the case of limit states with multiple
design points or high nonlinearity [22].

Despite approximate methods such as FORM, simulation meth-
ods can provide the results with arbitrary precision at the cost of
more computational efforts. An accurate estimation of the failure
probability of a structure generally requires a large number of
Monte Carlo simulations and limit state evaluations. Since often
the limit states are not explicitly presented, a costly numerical
method such as FEM is usually utilized [9]. To resolve this problem,
several methods have been presented. The aim of variance reduc-
tion techniques is to reduce the statistical fluctuations and yield
more accurate results with fewer computational efforts. A number
of simulation techniques broadly applied are importance sampling,
line sampling, directional simulation and subset simulation
[18,23,24].
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The central idea in importance sampling technique is sampling
in the most important parts of the stochastic space which have
higher probability content; therefore, more accurate probability
estimations with less variance could be gained [25–27]. Directional
simulation samples polar directions in standard normal space. The
probability content for each direction is evaluated by a one-
dimensional integration which has a closed-form solution in the
standard normal space [28]. Directional simulation and importance
directional simulation have been widely studied by Ditlevsen et al.
[29,30] and Melchers [31], and Moarefzadeh and Melchers [32]. In
a paper by Bjerager [33] some directional sampling densities are
presented for particular classes of the limit state functions. Nie
and Ellingwood [28] presented three deterministic procedures to
sample the uniformly distributed directions. These methods lack
the adaptability with respect to the limit state and become ineffi-
cient for highly-nonlinear limit states or low-failure probabilities.
Subsequently, Nie and Ellingwood [34,35] made an adaptive direc-
tional sampling technique which applies a neural network in order
to distinguish important regions on the unit hyper sphere and uti-
lizes a finer mesh for sampling on those regions. Grooteman [36]
developed an adaptive radius-based importance sampling proce-
dure and, in another paper by him [22], a surrogate-based adaptive
directional importance sampling.

This study is aimed at developing an adaptive directional
importance sampling. To do this, inspired by the cross entropy-
based adaptive importance sampling method presented by [9], a
new importance sampling procedure is introduced into the direc-
tional simulation scheme. An outline of the proposed method is
demonstrated in the sequel. A number of well-known example
limit states are employed to compare the proposed method with
other procedures and prove its efficiency.

A set of non-normal interdependent random variables can
always be transformed into independent standard normal vari-
ables by applying appropriate transformations such as Nataf [37]
or Rosenblatt transformations [38]. Thus, the remainder of the
paper is dedicated to independent standard normal space, usually
called U-space. Before introducing the new directional importance
sampling method, a brief scheme of directional simulation is
presented.

The rest of paper is structured as follows. Sections 2 and 3 dis-
cuss a brief overview of directional simulation and cross entropy-
based importance sampling, respectively. The details of the pro-

posed method are demonstrated in Section 4. In Section 5, the
accuracy and efficiency of the proposed method are examined by
test problems, and the results are compared with crude Monte
Carlo (MCS) and Directional Simulation (DS). Finally, a conclusion
is put forward in Section 6.

2. Directional importance sampling

The failure probability in the n-dimensional standard-normal
space can be expressed by the following integral [39,40]:

Pf ¼
Z
S

Z
b
ð2pÞ�n=2exp � r2

2

� �
rn�1drds ð2Þ

The inner integral is taken along the radial direction, and the
outer integral is taken on the unit hypersphere surface denoted
by S. Each radius coincides with the limit state surface in a point
at the distance of b from the origin (See Fig. 1).

The inner integral can be expressed as a chi-squared cumulative
distribution function; therefore, the integral (2) would be read as
follows [40]:

Pf ¼ Cðn=2Þ
2pn=2

Z
S
½1� v2

nðb2Þ�ds ð3Þ

where v2
nðÞ denotes the cumulative chi-squared distribution

function with n degrees of freedom, and Cð�Þ is the gamma func-
tion. By introducing the importance directional sampling function
q(.), the Eq. (3) is expressed as:

Pf ¼ Cðn=2Þ
2pn=2

Z
S

½1� v2
nðb2Þ�

qðaÞ qðaÞds ð4Þ

The directional sampling function q(.) is a density function
defined on the surface of the unit hypersphere and randomly sam-
ples the points on the unit n-sphere or equally speaking unit vectors
a. Regarding the Eq. (4), the estimation for the failure reliability is:

P̂f ¼ 1
N
Cðn=2Þ
2pn=2

XN
i¼1

½1� v2
nðb2

i Þ�
qðaiÞ ð5Þ

where the unit vectors ai are the samples based on the distribu-
tion q(.). If the directional sampler is uniform on the hypersphere,
the denominator of Eq. (5) is canceled out with the coefficient Cðn=2Þ

2pn=2 ,
and the Eq. (5) is reduced to:

P̂f ¼ 1
N

XN
i¼1

½1� v2
nðb2

i Þ� ð6Þ

which is the unbiased estimator of conventional directional
simulation [22].

It must be noted that obtaining the bi values requires finding
the coincidence point of the sampled directions ai with the limit
state surface. There are very efficient root finding algorithms such
as the secant method which is utilized here.

3. Cross entropy-based adaptive importance sampling

There are several variance reduction methods, one of the most
popular of which is parametric importance sampling. This tech-

nique exploits a proper sampling density function q(x,v) with the
parameter vector v to estimate the integral

R
hðxÞdx as follows [9]:Z

hðxÞdx ¼
Z

hðxÞ
qðx;vÞ qðx;vÞdx ð7Þ

Z
hðxÞdx � 1

N

XN
i¼1

hðxiÞ
qðxi;vÞ ð8Þ

Fig. 1. Definition of b in the polar integration equation.
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