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a b s t r a c t

The computational intensiveness inherently associated with uncertainty quantification of engineering
systems has been one of the prime concerns over the years. In order to mitigate this issue, a novel
approach has been developed for efficient stochastic computations. The proposed approach has been
developed by amalgamating the advantages of two available techniques namely, high dimensional model
representation (HDMR) and Kriging. These two methods are coupled in such a way that HDMR addresses
the global variation in the functional space using a set of component functions and the fine aberrations
are interpolated by utilizing Kriging, performing as a two level approximation. A Bayesian learning frame-
work has been integrated with the locally refined model so as to construct a sparse configuration.
Implementation of the proposed approach has been demonstrated with five benchmark problems and
a practical offshore structural problem. The efficiency and accuracy of the proposed approach in stochas-
tic response analysis have been assessed by comparison with Monte Carlo simulation. Excellent results in
terms of accuracy and computational effort obtained makes the proposed methodology potential for fur-
ther complex applications.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The integration of computational models and probabilistic
methodologies have acquired notable interest in the last few dec-
ades. Consequently, the field of uncertainty quantification (UQ)
has emerged quite rapidly and various approaches have been
developed for accounting uncertainties in the structural models
[1,2]. However, most of the approaches associated with UQ rely
upon repeated calls to the underlying computational model of
the structure [3,4]. More specifically, despite considerable
advances in computer technology over the last two decades, a sin-
gle simulation of large-scale finite element models still remain
computationally expensive due to the continuous requirement
for more realistic representation of the actual system response
[5,6].

In order to attenuate the computational expense inherently
associated with UQ, the concept of surrogate modelling has
emerged [7,8]. Surrogate modelling is an efficient apparatus for
formulating an algebraic approximation to the input-response
map of the system. These tools approximate the underlying com-
putational model in a sample space and thereby diminishing the

simulation time appreciably [9]. Few noteworthy examples of such
techniques which have been favorably employed in the past are,
least square approximation [10], moving least square approxima-
tion [11], polynomial chaos expansion [12], high dimensional
model representation (HDMR) [13], Kriging [14], radial basis func-
tion [15], support vector machine [16].

Among these techniques, HDMR has evolved to be one of the
most conducive dimension reduction methods and has received
prominent recognition in recent times [17]. It can be defined as a
quantitative evaluation and estimation tool for capturing the high
dimensional relationships between sets of input and output model
variables. HDMR can be broadly categorized into two divisions on
the basis of determining the component functions, which are cut-
HDMR [18] and random sampling (RS)-HDMR [19]. However, these
standard HDMR models constructed over the whole functional
space has been often observed to be deficient in accurately captur-
ing the input-output relationship [20,21]. Additionally, the compu-
tational effort associated with cut-HDMR may prove to be
intensive in high dimensional space, since it utilizes interpolation
[22,23]. The computational issue of interpolation can be surpassed
by utilizing RS-HDMR approach. However, the determination of
the component functions by Monte Carlo integration generally
requires a large number of training points and moreover,
introduces significant errors [24]. Therefore, the need to develop
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efficient HDMR models operable in high-dimensional functional
space has been the mainstay among the research community. In
this context, a new multiple sub-domain RS-HDMR has been
proposed [25], which is a combination of RS-HDMR approxima-
tions built in sub-domains of input space. Very recently, a
similar approach referred to as multi-element least square HDMR
has been proposed [26], in which various least square regression
techniques have been utilized for stochastic multiscale model
reduction.

In most applications, it has been observed that the responses
are sparse and contain few important terms in their sphere. Effi-
cient approaches have been developed for reconstructing sparse
functions in the field of compressed sensing [27]. This reconstruc-
tion problem is an ill-posed problem and regularization techniques
(e.g., Tikhonov regularization) that constrain the ‘2 – norm of the
solution are commonly employed [28]. An adaptive non-intrusive
method has been proposed which builds a sparse PC expansion uti-
lizing the least angle regression algorithm for detecting the signif-
icant coefficients of the PC expansion [29]. In the same context, a
prevalent supervised machine learning algorithm referred to as
support vector machine (SVM) [30] has been developed. SVM has
been observed to lead towards good generalization by avoiding
over-fitting and effectively results in a sparse model dependent
only on a subset of kernel functions [31]. However, in order to
address some of the shortcomings of SVM (which have been later
discussed in Section 2), a sparse Bayesian framework identical in
functional form to SVM, known as relevance vector machine
(RVM) has emerged [32].

The objective of this work has been to develop an efficient com-
putational model which is capable to deal with high-fidelity com-
plex UQ problems by reviewing the state-of-the-art and addressing
their limitations as discussed over the last two paragraphs. The pri-
mary focus has been to improvise the existing HDMR models in
terms of prediction accuracy within limited computational budget.
Specifically in the present work, the following improvements have
been implemented on the HDMR model:

� As the first enhancement, Kriging has been incorporated within
the HDMR model so as to achieve local refinements and amelio-
rate its approximation capabilities. A similar refinement to PCE
[33] has been recently implemented which has served as a stim-
ulus to this work.
� Since Bayesian formulation is considered to be the most general
framework for UQ, a Bayesian framework of the above locally
refined model has been devised by integrating an effective
machine learning algorithm, referred to as RVM so as to con-
struct a sparse model at a much lower computational
complexity.

In this paper, the refined computational model proposed has
been applied to the following cases:

� Five benchmark test problems for numerical validation,
� A practical offshore application, such as, stochastic response
analysis of a four-legged offshore jacket platform.

The rest of the paper has been organized in the following
sequence. Section 2 discusses the general foundation of the var-
ious approaches utilized in this study. The detailed formulation
of the proposed approach has been presented in Section 3. The
proposed approach has been applied to five benchmark prob-
lems in Section 4. Section 5 explores the performance of the
proposed approach in a practical offshore structural
problem. Finally, the useful findings of the study have been
summarized.

2. Fundamental concepts

2.1. High dimensional model representation

In this sub-section, a brief description of HDMR as an effective
tool to map the input-output functional relationship has been pre-
sented. Suppose, i ¼ ði1; i2; . . . ; iNÞ 2 NN

0 be a multi-index with
jij ¼ i1 þ i2 þ � � � þ iN , and let N P 0 be an integer. Considering,
x ¼ ðx1; x2; . . . ; xNÞ be a N dimensional vector, representing the
input variables of a structural system, the output gðxÞ can be
expressed as a finite series [34] as:

gðxÞ ¼
XN
jij¼0

giðxiÞ ð1Þ

Definition 1. Two subspace A and H in Hilbert space are spanned
by basis fa1; a2; . . . ; alg and fh1;h2; . . . ;hmg respectively. If (i) H � A
and (ii) H ¼ A� A? where, A? is the orthogonal complement
subspace of A in H, H is termed as extended basis and A as non-
extended basis.

Considering w is to be a suitable basis of x, Eq. (2) can be
expressed in terms of extended bases as,

gðxÞ ¼ g0 þ
XN
k¼1

XN�kþ1
i1¼1
� � �

XN
ik¼ik�1

Xk
r¼1

X1
m1¼1

X1
m2¼1
� � �
X1
mr¼1

aði1 i2 ...ikÞirm1m2 ...mr
wi1

m1
. . .wir

mr

" #( )

ð2Þ

where, g0 is a constant term representing the zeroth order
component function or the mean response of any response function
gðxÞ. It has been observed that most real-life problems exhibit only
the lower order cooperative effect and therefore, the higher

order components in Eq. (2) can be ignored. Considering up to Mth

order component function and sth order basis, Eq. (2) can be
rewritten as

ĝðxÞ ¼ g0 þ
XM
k¼1

XN�kþ1
i1¼1
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XN
ik¼ik�1

Xk
r¼1

Xs
m1¼1

Xs
m2¼1
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Xs
mr¼1

aði1 i2 ...ikÞirm1m2 ...mr
wi1

m1
. . .wir

mr

" #( )

ð3Þ

Once the unknown coefficients associated with the bases are
determined, Eq. (3) represents the basic functional form of HDMR.
In order to obtain the coefficients a, a random sampling method
and Monte Carlo integration are utilized. However, it has been
observed that Monte Carlo integration experiences slow conver-
gence and results to a significant error [19].

The following section introduces Kriging which is based on local
functional approximation.

2.2. Kriging

Kriging has emerged as a powerful surrogate modelling tech-
nique in which the interpolated values are modelled by Gaussian
process governed by prior covariances [35]. This key concept has
been introduced [36] so that Kriging may also be utilized in simu-
lation of computer experiments.

Suppose, x ¼ ðx1; x2; . . . ; xNÞ are the input variables, where
x 2 D � RN . Now assuming the model outputMKðxÞ to be a realiza-
tion of a Gaussian process, one obtains

MKðxÞ ¼ bTfðxÞ þ r2Zðx;xÞ ð4Þ
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