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In common response surface method (RSM) for structural reliability analysis, performances of several
experimental points must be evaluated via finite element analysis. The number of required experimental
points is proportional to the number of random variables. Hence, for a high-dimensional structural reli-
ability problem, computational cost is high, especially for structures with computationally intensive
finite element models. On the other hand, the accuracy of classical RSM in estimating the probability
of failure depends on the locations of experimental points. This paper proposes an efficient and accurate
RSM. The efficiency is increased by using exponential surrogate model instead of quadratic one and by
using experiment updating technique. In this way, the number of required experimental points is signif-
icantly reduced. Meanwhile, the accuracy of RSM is improved by choosing locations of experimental
points judiciously, such that, to be close to the actual limit state surface. Five examples are solved to
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demonstrate the high efficiency and accuracy of the proposed method.
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1. Introduction

The existence of uncertainty [1] in material properties, applied
loads and geometrical characteristics of structures forms rational
basis for structural reliability analysis. In order to assess the relia-
bility of a structure, it is common to estimate its probability of fail-
ure. To this end, the use of numerical integration methods is
unavoidable. This is because the closed-form solution for the inte-
gral of failure probability is not available in almost of all cases. One
of the well-known simulation methods for estimating this proba-
bility is the Monte Carlo simulation (MCS) method [2], which
needs very large number of evaluations of limit state function
(LSF). Since each evaluation is accomplished through a finite ele-
ment analysis, hence, the computational cost will be tremendous
for large-scale structures with complex finite element models. On
the other hand, first-order reliability method (FORM) [3,4] also
requires a large computation time when a large number of random
variables is involved. In addition, it may suffer from convergence
problems [5]. In order to alleviate the computational burden of
these time-consuming finite element analyses, it is convenient to
use a response surface function (RSF) as a surrogate model instead
of actual LSF. This well-known approach is called response surface
method (RSM). In traditional RSM, quadratic polynomial function
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without cross terms is used as RSF [6]. The initial RSF is fitted based
on 2n+ 1 experimental points located along the n axes of normal
Gaussian space, where, n is the number of random variables. Then,
FORM is applied to find the most probable point (MPP) for the ini-
tial RSF. Upon finding such a point (called also design point), the
center point of the experimental points is replaced with this MPP
and the other 2n points are selected around the MPP alongside
the n axes (two points alongside each axis at both sides of MPP).
This approach is repeated iteratively to find the final RSF. The effi-
ciency of classical RSM depends on the number of random vari-
ables n, and on the number of iterations required to obtain final
RSF. On the other hand, the accuracy of classical RSM in approxi-
mating actual LSF and consequently the probability of failure
depends on the locations of experimental points around the design
point.

Up to now, many researchers have improved the accuracy and
the efficiency of classical RSM. These valuable works are briefly
reviewed herein: Rajashekhar and Ellingwood [7] presented an
adaptive iterative procedure to develop a RSF. They suggested a cri-
terion for reduction in the number of experiments after the first
iteration. The location of experiments for cross terms and a sys-
tematic procedure to reduce the number of experiments depend-
ing upon the importance of each term in the previous
approximation also were suggested. Kim and Na [8] proposed an
improved sequential RSM. They used gradient projection method
to select sampling point close to actual LSF. They suggested also
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a method to control the selection range of sampling points, consid-
ering the nonlinearity of LSF. Gayton et al. [9] improved the RSM by
taking into account the engineering knowledge about the structure
under investigation. Their method, namely, CQ2RS (Complete
Quadratic Response Surface with re-Sampling) reduces the cost
of reliability analysis using a statistical formulation of the RSM.
They used re-sampling of experiments and confidence interval to
locate the design point. Gupta and Manohar [10]| proposed an
improved RSM useful in the case of reliability analysis involving
performance functions with multiple design points and/or multiple
failure regions with considerable contribution in the failure proba-
bility. Wong et al. [11] improved the RSM by choosing the param-
eter f as a decreasing function of the coefficient of variation of the
random variables. An adaptive approach was also presented to
modify the location of sampling points. In the adaptive RSM pro-
posed by Kaymaz and McMahon [12], weighted regression was
used in place of normal one to provide better approximation of
LSF in vicinity of the design point. In addition, they selected exper-
imental points from the region where the design point is most
likely to exist. Duprat and Sellier [13] suggested to re-use the
experimental points, which are positioned efficiently with respect
to the design point, in the next iteration of the experimental
design. Lee and Kwak [14] used moment method in combined with
RSM to estimate the probability of failure more efficiently. The use
of higher order polynomials in RSM can best be found in the work
of Gavin and Yau [15]. They proposed to use a polynomial without
fixed degree to obtain better RSF. Cheng et al. [16] presented an
artificial neural network-(ANN) based RSM. They applied uniform
design method to select training datasets for establishing an ANN
model. Then, they used FORM to estimate the failure probability.
Nguyen et al. [17] fitted the RSF using double weighted regression
technique. In their method, experiments are weighted according
to: (i) their distance from the true failure surface and (ii) their dis-
tance from the estimated design point. Doing so, computational
time is reduced significantly. Kang et al. [18] proposed to use mov-
ing least squares method (MLSM) in RSM to find fitting constants.
This increases the weights of points close to MPP, to provide better
approximation of LSF around it. Also, the efficiency of RSM was
improved in their work through judicious selection of experimen-
tal points in subsequent iterations. Allaix and Carbone [19] pro-
posed an improvement of RSM. Their iterative strategy for
determination of RSF, uses importance sensitivities of random vari-
ables to choose the locations of sample points. For the same num-
ber of LSF evaluations, the accuracy of their method in estimating
failure probability is higher than classical RSM. Zhao and Qiu [20]
proposed two improved RSMs. They reduced the number of LSF
evaluations by using the concept of control point, which is close
to the actual design point. In addition, a moving technique of
experimental points was suggested to improve the accuracy of
RSM in estimating the failure probability. Roussouly et al. [21] pro-
posed a new adaptive RSM, in which a RSF is built from an initial
Latin Hypercube Sampling (LHS) where the most significant terms
are chosen from statistical criteria and cross-validation method.
Then, LHS is refined in a stepwise manner and finally a bootstrap
method is used to determine the influence of the response error
on the estimated probability of failure.

In the above literature, the number of LSF calls is mainly
reduced by reusing the experimental points of previous iterations.
This is a good strategy for increasing the efficiency of RSM, but
seems to be insufficient for the case of high-dimensional problems
which has not been paid attention in the literature. As it was men-
tioned, in classical RSM, quadratic polynomial function without
cross terms is used as RSF. In this approach, 2n +1 experimental
designs are needed in each iteration, where, n is the number of ran-
dom variables. Thus the total number of experimental points
required for the construction of final RSF is proportional to the

number of random variables. In most cases we need time-
consuming finite element analyses to evaluate implicit perfor-
mance function for experiments. In order to reduce the number
of required experiments, in Section 3.2 of this paper, exponential
response surface with only n+ 1 sample points is used as RSF. In
this way, the total number of experimental points will be reduced
by about half for high-dimensional problems. Moreover, fitting
procedure for exponential RSF will be converged faster than the
same procedure for quadratic ones. This is because in this case,
we will need to solve n + 1 equations for n + 1 unknowns. In addi-
tion to the use of exponential RSF, it is suggested in this work to
select n + 1 sample points for first and second iterations only. Then,
for the rest of iterations (until convergence), the latest estimated
design point is replaced with one of the experimental points used
in latest iteration. Here, this approach which considers the Eucli-
dean distance between experiments, is called experiment updating
technique and will be described in Section 3.3. These two improve-
ments increase the efficiency of classical RSM. Furthermore, the
accuracy of the RSM is improved, herein, by choosing the locations
of sample points in a judicious way. This improvement, described
in Section 3.1, is based on the vector length and the angle between
two vectors. In some of the approaches proposed in literature for
selection of experiment locations, it may lead, in some cases, to
an ill-conditioned system of equations; this latter is avoided in
the procedure proposed in Section 3.1. Several examples are finally
solved in Section 4 to demonstrate the high efficiency and accuracy
of the proposed method.

2. Classical RSM for reliability analysis

The reliability of a structure can be defined by the reliability
index, i.e. the shortest distance between origin and limit state sur-
face in standard Gaussian space. However, it may better be defined
based on the probability of failure of the structure P; which is
defined as

= [ fxix (1)
G(X)<0

where f (X) is the joint probability density function of the vector of
basic random variables X = [x17x27...xnf. G(X) is the limit state
function. The failure probability is integrated over the failure region
defined as G(X) < 0.

In classical RSM, in order to reduce the computational cost
induced by evaluations of actual LSF, G(X) is approximated by a
RSF as G(X). In conventional RSM, a quadratic polynomial function
without cross terms [6] is chosen as RSF, which is expressed for the
case of n random variables X as follows

GX)=a+ ibixi + iqxf )
i=1 i=1

wherein a, b; and ¢; are unknown coefficients to be determined
using at least 2n + 1 experimental points.

The experimental points are chosen to be the origin of standard
space (corresponding to the mean values X) as the center point,
and, 2n points on the n coordinate axes with a distance of f from
origin. By using these 2n + 1 points and solving 2n + 1 linear equa-
tions, the unknown coefficients are obtained. Then, FORM is
applied to find the MPP for the constructed RSF. Since, this point
may not be true MPP of actual LSF, an iterative procedure is fol-
lowed to find actual design point. For this aim, the RSF should be
improved by updating the experimental points. Thus, the center
point of experiments should be moved toward the estimated
design point (Xp). The center point of next iteration should lie on
the actual LSF. To this end, an iterative procedure is followed:
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