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a b s t r a c t

The time-variant system reliability analysis is a significant topic in the field of reliability engineering.
Although progress has been made, there remain multiple challenges in the existing methods including
the explosive number of possible failure modes, requiring correlation information, and excessive compu-
tational efforts.
In the present work, an improved moment method with high accuracy, efficiency and robustness is

proposed for system reliability analysis of deteriorating structures. First, by introducing the complete sys-
tem failure process, an equivalent time dependent performance function describing a deteriorating struc-
tural system is obtained. Second, a point estimate method based on the adaptive trivariate dimensional
decomposition is adopted to calculate the first six moments of the performance function. And third, a
saddlepoint approximation involving the first six moments is developed to estimate the system failure
probability. Several examples are investigated to verify the accuracy, efficiency and stability of the pro-
posed method.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

With the increasing awareness and importance of probability-
based design methods and the development of modern computa-
tional techniques, reliability analysis has been playing an increas-
ingly significant role in the area of structural engineering [1,2].

In general, structural reliability analysis is usually classified into
two categories: structural member reliability and structural sys-
tem reliability [3].

The structural member reliability considers only single perfor-
mance function, and has gradually developed to maturity with typ-
ical methods including: FORM [2], SORM [2], response surface
method [4] and Monte Carlo method (MCM) [2] etc. This kind of
reliability not only covers the reliability of structural member,
but also includes the reliability of structural system with one fail-
ure mode, which considers certain response of structural system,
such as displacement response, base shear and so on, exceeding a
threshold as limit state [16–19]. As long as one failure mode is con-
sidered, whether a structural member or a structural system is
analyzed, it is essentially a structural member reliability, and the
methods mentioned above can be applied.

The structural system reliability considers multiple failure
modes, and classical system reliability, which focuses on the col-
lapse or forming mechanisms of perfectly elasto-plastic and
elastic-brittle structures [3,5,6,10], is an important part of it. There
usually exist multiple potential failure paths that lead to the col-
lapse of structure, thus methods based on the dominant failure
modes are developed naturally for the classical system reliability,
which mainly include two steps: (i) identifying the dominant fail-
ure modes of a structure, including b-unzipping method [3],
branch and bound method [3], truncating enumeration method
[5], criterion methods [6] and so on; and (ii) approximating its reli-
ability based on the identified failure modes, including the PNET
[7], the lower-upper bound method [8,9]. Although the achieve-
ments were fruitful, this family of methods has common restric-
tions that: (i) the number of failure modes increases dramatically
as the structure redundancy increases [11]; and (ii) the correlation
information between failure modes is difficult to evaluate. In most
cases, the correlation coefficients are assumed empirically when
unavailable [12,13]. Furthermore, the system reliability with mul-
tiple correlated failure modes may be difficult to evaluate even if
the correlation information is known. MCM can also be applied
to classical system reliability, and various techniques focusing on
efficient samplings and variance reduction have been developed
[14,15]. However, the efficiency and robustness of these methods
requires further discussion and verification.
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Due to ageing, corrosion, fatigue and other damage scenarios, an
engineering structure usually deteriorates gradually with time, and
the time-variant reliability analysis is developed. Many researches
devoted to time-variant structural member reliability analysis [21–
24]. Comparatively speaking, only a few attempts have been made
to study the reliability of time-variant structural system forming
mechanisms [25–28], which is also named as time-variant classical
system reliability in this paper. Most of these works are based on
the assumption that all failure modes are given, and the structural
system is described logically as series, parallel, and hybrid cases
[25–27]. However, the identification of dominant failure modes is
a vital and complicated step when dealing with complex structures,
and the restrictions of combination explosion and unclear correla-
tion information still exit for these methods. What’s more, for dete-
riorating structural systems, there exists another major challenge
that the dominant failuremodesmay changewith time [28]. There-
fore, the traditional methods based on failure mode identification
become even less applicable for deteriorating structural systems,
due to the fact that it is required to trace and identify dominant fail-
ure modes at different points of time [28].

To avoid the restrictions of traditional system reliability meth-
ods, Chen and Li [29] proposed the development process of nonlin-
earity, which is also defined as complete system failure process
[30]. Based on this idea [29,30], the classical system reliability is
effectively described by a single equivalent performance function.
However, only non-deteriorating structures are discussed so far.

This work focuses on evaluating the time-variant classical sys-
tem reliability. By extending the complete system failure process
to deteriorating structures, and then combining with improved
high-order moment method, a comprehensive solution is pro-
posed. It is organized as follows. In Section 2, an equivalent perfor-
mance function for system reliability of deteriorating structures is
formulated based on the complete system failure process; the
moments of this performance function is evaluated by the adaptive
trivariate dimensional decomposition method; and the deteriorat-
ing system reliability is evaluated by the saddlepoint approxima-
tion with the first six moments. Several examples are presented
in Section 3 to verify the accuracy, efficiency and robustness of
the proposed method. Finally, some conclusions are summarized
in Section 4.

2. Improved moment method for system reliability of
deteriorating structure

2.1. Equivalent performance function based on the complete system
failure process and Rosenblatt transformation

Based on the complete system failure process [29,30], structural
failure can be described appropriately by a single performance
function.

2.1.1. Complete system failure process for deteriorating structural
system

Consider a perfectly elastoplastic structure with a random
vector H = {HL,HS}, in which all variables are mutually indepen-
dent, HS and HL are random vectors of structural parameters and
loads respectively. Define HL,1 as the reference load, HL can be
rewritten as

HT
L ¼ HL;1 �
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in which superscript T denotes transpose of vector, Q is the load
ratio vector, and

Qi ¼
HL;i

HL;1
i ¼ 1; . . . ; s1 ð2Þ

In regard to the complete system failure process [29,30], con-
sider loads F�r imposed on the structure, as the load F increases,
the nonlinearity of the structure gradually develops till a mecha-
nism occurs, meanwhile F reaches the bearing capacity Fmax.
Apparently, the structural system fails whenHL,1 > Fmax, and struc-
ture remains safe whenHL,1 < Fmax. In other words, the system reli-
ability of an elasto-plastic structure is equivalent to the probability
of its ultimate capacity being greater than the applied load.
Because Fmax is the function of bothHS and Q, which is determined
byHL according to Eq. (2), Fmax can be formulated as Fmax(HS, HL).
Therefore, the equivalent performance function of the classical sys-
tem reliability is

Z ¼ FmaxðHS;HLÞ �HL;1 ð3Þ
For example, a multi-story frame subjected to lateral loads {hL,1,

hL,2, hL,3} is illustrated in Fig. 1. Let hL,1 be the reference load, {hL,1,
hL,2, hL,3} = hL,1�{q1, q2, q3}=hL,1�q. The complete system failure pro-
cess is represented by relationship between displacement response
D and F. As the structure collapses or forms a mechanism, F reaches
the bearing capacity Fmax. Based on Eq. (3), the performance func-
tion value is Fmax-hL,1.

For a deteriorating structural system, some structural parame-
ters become time-variant random variables, loads and other struc-
tural parameters are still considered as time-invariant random
variables, and the performance function can be rewritten as

Zt ¼ FmaxðHSPðtÞ;HSV ;HLÞ �HL;1 ð4Þ
where HSP(t)={HSP,1(t),. . .,HSP,s2(t)} represents the time-variant
structural parameter sub-vector of HS, HSV = {HSV,1,. . .,HSV,s3} rep-
resents the time-invariant structural parameter sub-vector of HS.

2.1.2. Modeling of deteriorating structural parameters
Consider HSPi(t) as a element from time-variant vector HSP(t),

the deteriorationmodelHSPi(t) =HSPi0�d(t) is used in recent decades
[41–43], where HSPi0 is the initial random variable, and d(t) is a
monotonically decreasing deterministic function describing deteri-
oration. However, this type of deterioration model implicates
strong assumption that explicit linear relation is indicated between
any order moment of HSPi(t) and corresponding order moment of
HSPi0, namelyMq(HSPi(t)) = [d(t)]q�Mq(HSPi0), whereMq(.) represents
the qth central moment of random process or random variable in
the bracket. Therefore, this deterioration model results in the phe-
nomenon that the mean value decreases with t, but the coefficient
of variation remains invariant and inalterable along time.

In this work, another class of random process is selected as the
basic form of deterioration model, which is based on the idea that
the distribution parameters of deterioration model are described
by specific time-variant functions. In this way, the stochastic char-
acteristics of proposed deterioration model can be described more

Fig. 1. Illustration for complete system failure process.
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