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a b s t r a c t

Metamodel method is widely used in structural reliability analysis. A main limitation of this method is
that it is difficult or even impossible to quantify the model uncertainty caused by the metamodel approx-
imation. This paper develops an improved metamodel method which is unbiased and highly efficient. The
new method formulates a probability of failure as a product of a metamodel-based probability of failure
and a correction term, which accounts for the approximation error due to metamodel approximation. The
correction term is constructed and estimated using the Markov chain simulation. An iterative scheme is
further developed to adaptively improve the accuracy of the metamodel and the associated correction
term. The accuracy and efficiency of the new metamodel method is illustrated and compared with the
classical Kriging metamodel and high dimensional model representation methods using a number of
numerical and structural examples.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

A common technique for evaluating structural reliabilities with
complex limit state functions is to use the metamodel method. It
uses a strategic design of experiments (DoE) to obtain an analytical
approximation of the relationships between the input random
variables and the limit state response of interest. Earlier applica-
tion of this approach is the use of the response surface methods
[1]. Construction of metamodels is a challenging problem. Recent
developments include but not limited to artificial neural networks
[2–4], support vector machines [5–8], high dimensional model rep-
resentation (HDMR) [9,10], polynomial chaos expansion [11,12]
and Kriging [13,14]. For the commonly used polynomial-based
metamodel, the results may be sensitive to the selected interpola-
tion polynomials and their parameters due to the rigid and non-
adaptive structure of the polynomials [6]. For instance, although
polynomial chaos can be used for local interpolation, the defini-
tions of the design of numerical experiments and of the polynomial
degrees are tricky [11]. The performance of artificial neural net-
works cannot be guaranteed due to the fitting problems as there
is no efficient constructive method for choosing the structure and
the learning parameters of artificial neural network [5]. In addition
to these limitations, a general drawback of the metamodel method
is that it is difficult or even impossible to quantify the error caused

by approximating the actual limit state function (LSF) by a meta-
model [15–17].

In order to overcome the aforementioned difficulties, this paper
develops a new efficient metamodel method which is unbiased.
The basic idea is to formulate an unknown probability of failure
as the product of a metamodel-based failure probability and a cor-
rection term, which accounts for the approximation error due to
metamodel approximation. Although this idea is mathematically
straightforward and has been used in structural reliability analysis
very recently [18,17], the construction and the estimation of the
correction term is a challenging task in such methods. For instance,
the correction term in [18] is constructed as the sum of two terms,
one involves the union of the actual and the metamodel-based fail-
ure regions, and the other involves the intersection of such regions.
As a result, two different sets of samples from both union and
intersection are required to estimate the correction term. This
may decrease the efficiency for estimating the correction term.
Although the line sampling is used to accelerate the estimation
of the correction term, the determination of the important direc-
tion in line sampling is a nontrivial task. In this paper, the correc-
tion term is constructed by introducing an intermediate event,
which is the union of the actual failure region and the
metamodel-based failure region. Since only the samples from the
union of the actual and the metamodel-based failure region are
required, as compared with [18], the correction term can be esti-
mated more efficiently using the Markov chain simulation. To fur-
ther improve the efficiency of the proposed method, an adaptive
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refinement procedure is developed to simultaneously improve the
metamodel and the corresponding correction term. It shall be
noted that the hybrid use of variance reduction-based simulation
methods and metamodel method has been proposed more
recently, e.g., [16,19,20]. The metamodel in such methods are
employed in the context of simulation methods to estimate the
response of the samples. These methods are generally considered
as the improvement of the underlying simulation-based methods.
For example, in [19] a Kriging metamodel is combined with an
importance sampling that makes use of Markov chains. The Kriging
metamodel is used to predict the response of important samples,
as one step of the importance sampling. Overall, the reliability
analysis method is simulation-based, as opposed to the metamodel
method considered in this paper.

The paper is organized as follows: the Kriging metamodel is
briefly introduced in Section 2, followed by the presentation of
the proposed unbiased metamodel method in Section 3. The proce-
dure of the proposed method is then summarized in Section 4. Four
examples are then given to demonstrate the application and effi-
ciency of the proposed method, including a finite element analysis
(FEA)-based reliability assessment in which the limit state function
has to be evaluated implicitly through FEA. Comparisons of the
proposed method and the conventional metamodel methods,
including Kriging metamodelling and high dimensional model rep-
resentation, are made.

2. Kriging method

Among the available metamodel methods, herein we focus on
the Kriging method, which has gained significant attention in the
field of structural reliability theory in recent years [13,14,21]. It
should be noted that the proposed method of constructing and
estimating the correction term is general and can be applied to
any metamodel method, and not restricted to the Kriging meta-
model discussed here. This section briefly introduces the Kriging
method for the completeness of introducing the proposed method-
ology. Details about Kriging method can be found elsewhere, e.g,
[22,23].

Kriging metamodel is an interpolation technique based on sta-
tistical theory, which consists of a parametric linear regression
model and a nonparametric stochastic process [22]. It requires
DoE to determine its stochastic parameters and then predictions
of the response can be computed on any unknown sample. Given

an initial DoE X ¼ ½xð1Þ; . . . ;xðpÞ�T, with xðiÞ 2 Rn ði ¼ 1; . . . ; pÞ the

ith input, and Y ¼ ½gðxð1ÞÞ; . . . ; gðxðpÞÞ�T with gðxðiÞÞ 2 R the corre-
sponding response to xðiÞ. The approximate relationship between
any sample x and the response gðxÞ can be denoted as

gðxÞ ¼ Fðb; xÞ þ zðxÞ ¼ fTðxÞbþ zðxÞ ð1Þ

where fTðxÞb is the regression model representing the trend
of the model, which is defined by a set of basis functions

fðxÞ ¼ ½f 1ðxÞ; . . . ; f mðxÞ�T and the corresponding regression coeffi-
cients b ¼ ½b1; . . . ; bm�T. In the ordinary Kriging, Fðb;xÞ is a scalar
and always taken as Fðb;xÞ ¼ b. So the estimated gðxÞ can be simpli-
fied as

gðxÞ ¼ bþ zðxÞ: ð2Þ
Here zðxÞ is a zero-mean stationary Gaussian process with auto-

covariance at points x and w defined as

covðzðxÞ; zðwÞÞ ¼ r2Rðx;wÞ ð3Þ
where cov = covariance, r2 is the process variance and Rðx;wÞ is the
autocorrelation function. The most widely used autocorrelation
function is anisotropic Gaussian model and is adopted in this paper:

Rðx;wÞ ¼ exp �
Xn
i¼1

hiðxi;wiÞ2
 !

ð4Þ

where xi andwi are the ith component of the points x andw respec-
tively, and hi is the correlation parameter in the ith dimension.

Define R as a p� p symmetric correlation matrix with
Rij ¼ RðxðiÞ;xðjÞÞ; i; j ¼ 1; . . . ; p, and F as a p� 1 unit vector, then b

and r2 are estimated as

b̂ ¼ FTR�1F
� ��1

FTR�1Y; ð5Þ

r̂2 ¼ 1
p

Y � Fbð ÞTR�1 Y � Fbð Þ: ð6Þ

The correlation parameter h can be obtained through the max-
imum likelihood estimation:

h ¼ argmin
h

ðdetRÞ1pr̂2: ð7Þ

Since there exists corresponding interpolation model for each h,
the best Kriging model can be obtained by optimizing h.

Then at an unknown point xð0Þ, the Best Linear Unbiased Predic-
tor (BLUP) of the response ~gðxð0ÞÞ and Kriging variance r2

~gðxð0ÞÞ are
computed as

~gðxð0ÞÞ ¼ fTðxð0ÞÞbþ rðxð0ÞÞTR�1ðY � FbÞ; ð8Þ
r2

~gðxð0ÞÞ ¼ r̂2 1þ uðxð0ÞÞTðFTR�1FÞ�1
uðxð0ÞÞ � rðxð0ÞÞTR�1rðxð0ÞÞ

� �
ð9Þ

where rðxð0ÞÞ ¼ ½Rðxð0Þ;xð1ÞÞ; . . . ;Rðxð0Þ;xðpÞÞ�T and uðxð0ÞÞ ¼ FTR�1r
ðxð0ÞÞ � 1.

3. An unbiased metamodel method

Although some metamodels like Kriging can provide a measure
of the local uncertainty of the prediction of new samples, i.e., Krig-
ing variance, the overall error resulting from replacing the actual
LSF with the metamodel cannot be quantified. This model uncer-
tainty is the epistemic uncertainty of the metamodel. It cannot
be quantified by the metamodel itself. As a consequence, the direct
use of Kriging metamodel will inevitably result in a biased estima-
tor of the probability of failure. Having identified this issue, we
propose a correction term to quantify the bias of the metamodel-
based failure probability, and formulate the unknown probability
of failure as a product of the metamodel-based failure probability
and a correction term. In this manner, the bias of the
metamodel-based failure probability can be accounted for and an
unbiased estimator of the failure probability is obtained.

Let ~gðxÞ be a Kriging metamodel for the real LSF gðxÞ, andeF ¼ fxj~gðxÞ 6 0g be the metamodel-based failure region for the
real failure region F ¼ fxjgðxÞ 6 0g. The correction term, denoted
by K, is defined as

K ¼ PðFÞ
PðeFÞ ð10Þ

where PðFÞ and PðeFÞ is the failure probability and the metamodel-
based failure probability, respectively. Then PðFÞ can be written as

PðFÞ ¼ K � PðeFÞ: ð11Þ
Eq. (10) shows that the correction term K quantifies the error

resulting from substituting gðxÞ with ~gðxÞ, thus it can be used to

consider the bias of the metamodel-based failure probability PðeFÞ
even a poor metamodel ~gðxÞ is employed. By multiplying PðeFÞwith
K, an unbiased estimator of PðFÞ is achieved as shown in Eq. (11).

Clearly, the key issue of the method is the computation of the
correction term K. Since one cannot guarantee that the
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