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a b s t r a c t

Among the probabilistic methods of analysis of multi-degree-of-freedom nonlinear structural systems,
stochastic equivalent linearization is a common alternative to Monte Carlo simulation. Using the Bouc-
Wen model in particular, may yield the equivalent system in analytical closed form, which is fundamen-
tal to efficient computation. Within this context, the Bouc-Wen model is here extended in a simple fash-
ion to introduce the interaction of the resisting axial force and bending moment, as is typical of short
columns. The member is idealized as a massless linearly elastic beam element provided with terminal
rotational springs whose behavior follows the extended Bouc-Wen model. Consistent with a parabolic
interaction diagram, the probabilistic moments of the response are formulated by the common stationary
Gaussian nonzero-mean linearization method with random earthquake motion, deterministic gravity
load and asymmetric hysteresis. The interaction model is validated by comparing the response of two
portal frames, whose different sensitivity to interaction is captured. In addition, Monte Carlo simulation
is carried out using a piecewise linear interaction model. The effect of parabolic interaction on the dis-
placement and hysteretic rotation from linearization does not match quantitatively the piecewise-
linear interaction in the simulation. Nevertheless, qualitative agreement is satisfactory. Full agreement
appears between other response quantities. The proposed interaction model proves to be suitable at least
for comparative probabilistic seismic analyses of framed structures with possible yielding of columns.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The seismic analysis of buildings involves randomness of the
ground motion as well as unpredictability of the hysteretic
structural behavior, not to mention the uncertainty from fuzziness
and partial knowledge. A probabilistic approach is still too difficult
and computationally demanding for engineering practice, but
necessary to research on underlying issues. Many methods of
stochastic structural analysis are now available. Concerning the
randomness of excitation, such methods may be classified as
oriented to the numerical characteristics or to the probability
density function (PDF); about the structural uncertainty, one can
distinguish the perturbation approach, the orthogonal expansion,
and Monte Carlo (MC) simulation [1]. To the former class belongs
the stochastic equivalent linearization (SL) method. In brief, any
nonlinear relationship in the structure is replaced by a linear
one, optimum in some statistical sense [2,3]. Clearly, a certain
approximation is inevitable; inherent error depending on the
degree of nonlinearity as well as other factors is a drawback

[4–7]. Nevertheless, the SL method is deemed to be the only feasi-
ble alternative to MC simulation where the computational burden
is a concern, for instance to analyze the multi-degree-of-freedom
(DOF) hysteretic systems of engineering practice [3,8–14]. In some
sense, the SL method is opposite to MC simulation, with most of
the other methods being placed in-between [7].

Bouc [15] and Wen [16] are authors of a well-known smooth
differential model suitable for representing a variety of nonlinear-
ity and hysteresis. Despite its great versatility, this behavior model
may be stochastically equivalent to a linear system in analytical
closed form, conditional on the sense of equivalence as well as
advisable parameter values [17]. Clearly, knowing the parameters
of the equivalent system as explicit functions of the probabilistic
moments of the response is a key point for any efficient computa-
tion. This is why a number of extensions of the Bouc-Wen model
appear in the literature with frequent application to SL analysis
[3,18]. In brief, Baber and Wen [19] and Sues et al. [20] introduced
cyclic degradation. Further study by Baber and Noori [21] and
Foliente [22] led to include pinching. Recent elaboration of the
degrading pinching model is by Bursi et al. [23], Sengupta and Li
[24] and Kottari et al. [25]. Park et al. [26] covered biaxial bending.
Wang and Wen [27] generalized such extension, finally improved
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by Harvey and Gavin [28]. Considerable attention has been given to
asymmetry. Proposals with various flexibility and complexity
come from Baber and Noori [29], Colangelo et al. [30], Dobson
et al. [31], Wang and Wen [27], Song and Der Kiureghian [32,33],
Kwok et al. [34] and Zhu andWang [35]. Shih and Sung [36] imple-
mented isotropic hardening. Sireteanu et al. [37] and Love et al.
[38] introduced evolution from softening to hardening behavior.
Miah et al. [39] made the pre- to post-yield transition versatile.
Finally, it is noteworthy that the Ozdemir model [40], used often
as a basis to model superelasticity [41–43], may be seen as a spe-
cial case of the Bouc-Wen model [44,45].

Baber and Wen [46,47] formulated a lumped-plasticity model
for the seismic SL analysis of hysteretic framed structures. This
model consists of linearly elastic beam elements provided with
zero-length rotational springs at the ends. The moment and rota-
tion of the springs follow the Bouc-Wen equation. This study
focuses on extending such model in a simple fashion to make the
flexural strength of the springs dependent on the axial force in
the beam element. The interaction between the resisting axial
force and bending moment (PM interaction) typical of a short col-
umn is introduced. Such a feature may be crucial, for instance
under vertical ground motion [48,49]. In the field of SL, a piecewise
linear interaction of the biaxial bending moments has long been
formulated following a general multivariate approach, which in
principle can be applied to the PM interaction as well [8]. However,
to the knowledge of the writer any implementation into the Bouc-
Wen model is missing. Herein the PM interaction is simplified as
parabolic and incorporated into the Bouc-Wen model made asym-
metric by Colangelo et al. [30]. The stochastically equivalent linear
system is formulated in analytical closed form, preserving efficient
computation. As a first step, the common Gaussian SL method is
considered. The interaction model is validated on numerical basis.
The results from the stationary SL analysis of two portal frames,
differing in the importance of PM interaction, are compared with
each other. Such results are also compared with MC simulation
using a piecewise linear interaction model.

2. Proposed model

The proposal from this study consists of (i) the extension of the
Bouc-Wen model, and (ii) the incorporation into the finite element
model of a framed structure. This is detailed in the next sections,
respectively.

2.1. Extended Bouc-Wen model

As usual, a hysteretic component is connected in parallel with a
linearly elastic component. The behavior model in terms of total
bending moment M and flexural rotation h of a rotational spring
can be written as

M ¼ akhhþ ð1� aÞkzz ð1Þ
where kh = stiffness of the linear component; kz = alike parameter of
the hysteretic component; a = parameter to give weight to each
component, related to the post-yield hardening ratio; z = auxiliary
variable to formulate hysteresis. Herein any degradation is not con-
sidered as the stationary analysis is of concern; pinching is
neglected as well. In practice, the framed structures where flexure
dominates and detailing is good are expected not to show such fea-
tures. The Bouc-Wenmodel extended to introduce PM interaction is

_z ¼ _h aynðPÞ � jzjn cþ bsgnðz _hÞ þ dsgnðzÞ
h in o

ð2Þ

where a, n, c, b = parameters as in the original Bouc-Wen model. In
a few words, a is related to the slope, n governs the smoothness of
yielding, the sign of c dictates softening or hardening behavior and

b introduces the hysteresis by changing the stiffness between load-
ing and unloading. Indeed, there is redundance and most features
do not depend on a single parameter each; a proper interpretation
requires normalization [50]. d = additional parameter for the asym-
metry according to Colangelo et al. [30]; sgn(�) = signum function; y
(P) = function of axial force that introduces PM interaction. In fact,
the positive and negative asymptotic values of the auxiliary vari-
able, related to the resisting bending moments, are

zðþÞ
y ; jzð�Þ

y j ¼ a
cþ b� d

� �1=n

yðPÞ ð3Þ

Setting y(P) � 1 gives the previous model without PM interac-
tion, symmetric (d = 0) or asymmetric (d– 0; the sign of d dictates
which resistance is stronger). Instead, it is suggested to assume the
following parabola

yðPÞ ¼ 1� 2P � Pmax � Pmin

Pmax � Pmin

� �2

Pmin 6 P 6 Pmax ð4Þ

where Pmin, Pmax = extreme resisting axial forces at pure tension and
compression failure, respectively. Despite its simplicity, a parabolic
function may be a sound approximation of the interaction diagram,
as shown below. Moreover, a parabolic function is efficient for the
SL analysis as in Section 3. Relevant expectations can be reduced
to analytical closed form single expressions, whereas a piecewise
linear function, for example, would require fragmentation of inte-
grals. This choice is also consistent with using a smooth hysteretic
model, whereas a piecewise one would lead to irreducible integrals
[6]. It is noteworthy that y(P) as in Eq. (4) is dimensionless and
bounded by 0 and 1; the parameters of the former model, including
d for possible asymmetry, govern the dimensional flexural strength.

A limitation is that Eq. (4) requires negligible probability of the
axial force being outside the interval [Pmin, Pmax]. This is not guar-
anteed with a Gaussian process, as in the most popular SL method
used in Section 3. The axial force must be relatively small; failure
controlled by extreme axial forces is not covered. Moreover, Eqs.
(1)–(4) imply parabolic approximation of the PM interaction dia-
gram. This is usual for steel members. In the case of reinforced con-
crete, the same approximation may be good (Fig. 1(a)) or poor,
especially for asymmetric cross sections (Fig. 1(b)). In this respect,
if the PDF of axial force is negligible outside some interval smaller
than [Pmin, Pmax], the parabolic approximation may be fitted within
that reduced interval (Fig. 1(c)). Finally, y(P) into Eq. (2) affects not
only the strength but, accidentally, also the stiffness. The exponent
n should be great to minimize violation of the plasticity postulates,
while the elasto-plastic behavior is approached more and more
[51,52]. As the exponent n increases, the stiffness decreases, which
is not very rational. Clearly, the proposedmodel is quite simple and
conceived for engineering use.

2.2. Framed structure model

Planar framed structures are considered. The beam elements
have arbitrary orientation and axial, flexural and shear linearly
elastic behavior. The plastic deformation may occur in zero-
length rotational springs at any end of each beam element, accord-
ing to Eqs. (1)–(4). Since the seismic response, e.g. stress resultants
and yielding itself, is random, every possible critical region should
be provided with a hysteretic spring. Each spring implies that one
rotation h and one auxiliary variable z are introduced along with
the nodal DOF’s, which is relatively demanding. Indeed, there is a
sound criterion for detecting those springs unlikely to yield, lead-
ing to remove relevant nonlinear equations [53]. Such a criterion
is based on a frequency domain method that is not used in this
study. Obviously, the initial stiffness of the spring should be so
great that the rotation h remains small unless actual yielding

40 F. Colangelo / Structural Safety 67 (2017) 39–53



Download	English	Version:

https://daneshyari.com/en/article/4927774

Download	Persian	Version:

https://daneshyari.com/article/4927774

Daneshyari.com

https://daneshyari.com/en/article/4927774
https://daneshyari.com/article/4927774
https://daneshyari.com/

