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a b s t r a c t

Evaluating the behaviour of deteriorating steel structures is complicated by the inherent uncertainties in
the corrosion process. Theoretically, these uncertainties can be modeled using a probabilistic approach.
However, there are practical difficulties in identifying the probabilistic model for the deterioration pro-
cess as the actual corrosion data are rather limited. Also, the dependencies between different random
variables are often vaguely known and, thus, not included in the modeling. This paper proposes a prob-
abilistic analysis framework for modeling the atmospheric corrosion of steel structures with incomplete
information. The framework is based on the theory of imprecise probability and copula. Two examples
are presented to illustrate the methodology. The role of epistemic uncertainties on structural reliability
is investigated through the examples.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

For the safety assessment of deteriorating steel structures, it is
crucial to develop a reliable probabilistic model of deterioration to
predict the temporal changes to structural resistance [1,2]. The
deterioration of steel structures is a stochastic process with high
uncertainties and variabilities. Recent works have treated the
uncertainties using a pure probabilistic approach [3,4]. This
approach requires that all statistical characteristics for each uncer-
tainty can be determined reliably from sufficient observational
data. In practice, however, available real-world data on structural
corrosion are very limited, and the selection of probabilistic mod-
els (e.g., distribution type and/or distribution parameters) for
uncertain variables is so generally based on limited information
and/or subjective judgment.

It is thus advisable to consider the distribution itself as uncer-
tain when the available data is limited. Statistical estimations pro-
vide us with distribution functions for the sampling uncertainty,

which depends on the sample size. This uncertainty is reducible
with an increasing amount of information/data. From this angle,
it may be understood as epistemic uncertainty. Within a pure
probabilistic framework, epistemic uncertainty can be handled
with Bayesian approaches. Uncertain parameters of a probabilistic
model can be described with prior distributions and updated by
means of even limited data. They can then be modeled by Bayesian
random variables and introduced formally, together with the
remaining (aleatory) uncertainties, in the probabilistic analysis
[5]. Judgmental information is needed to characterize the epis-
temic uncertainties. The characterization of the epistemic uncer-
tainties can be substantiated by using the Bayesian updating rule
when data become available. However, when the data is very lim-
ited, the result of the Bayesian approach remains as almost purely
subjective.

Alternatively, an imprecisely known probability distribution
can be modeled by a family of all candidate probability distribu-
tions which are compatible with available data. This is the idea
of the theory of imprecise probabilities [6]. Dealing with a set of
probability distributions is essentially different from a Bayesian
approach. A practical way to represent the distribution family is
to use a probability bounding approach by specifying the lower
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and upper bounds of the imprecise probability distribution. This
corresponds to the use of an interval to represent an unknown
but bounded number. Consequently, a unique failure probability
cannot be determined. Instead, the failure probability is obtained
as an interval whose width reflects the imprecision of the distribu-
tion model in the calculated reliability.

A popular uncertainty model using the probability bounding
approach is the probability box (p-box for short) structure [7]. A
p-box is closely related to other set-based uncertainty models such
as random sets, fuzzy probabilities, Dempster-Shafer evidence the-
ory and random intervals. In many cases, these uncertainty models
can be converted into each other, and thus considered to be equiv-
alent [7–10]. Therefore, the p-box approach presented in this paper
is also applicable to other set-based uncertainty models. The
approach of imprecise probability generally requires less subjec-
tive information than the Bayesian approach. It can be argued that,
from a frequentist point of view, the epistemic uncertainties in the
probability distribution can be more faithfully represented using a
probability bounding approach [6,7,11].

Conventional probabilistic analysis often neglects the correla-
tions and dependencies between random variables. This assump-
tion is a common practice partly due to its mathematical
convenience, but more likely due to the limited availability of data.
It has been shown that the wrong assumption of dependence can
lead to unreliable predictions for risk assessments [12]. Copula the-
ory is a powerful tool for the dependence modeling of multivariate
data. A copula is a joint cumulative distribution function (CDF)
with uniform marginal. Copula theory has been used to model
dependence in probability boxes. Ref. [12] proposed a dependence
bounds convolution approach in which the uncertainties are mod-
elled as Dempster-Shafer structures and the dependence is
expressed as a given parametric copula. This method is useful for
calculations of basic arithmetic operations with small numbers of
variables. In [13], copula theory is combined with random sets
for computing the lower and upper bounds of a failure probability.

This paper proposes a practical framework for uncertainty anal-
ysis using dependent p-boxes in which copulas describe the
dependence. The Akaike Information Criterion is used to select
the copula model that provides the best fit to the observational
data. The confidence intervals of the copula parameter are esti-
mated using the Bootstrap method. The dependent p-boxes are
propagated through interval Monte Carlo (MC) simulation in order
to assess structural reliability. The framework is applied to the
time-dependent reliability analysis of steel structures subject to
atmospheric correlations, and is demonstrated through two exam-
ples. The importance of epistemic uncertainty in the probabilistic
modeling including dependencies is demonstrated on its influence
on the reliability estimates.

2. Dependent probability boxes

2.1. Probability boxes with dependencies

Let FXðxÞ denote the cumulative distribution function (CDF) for
a real-valued random variable X. A probability box is defined by a
pair of CDFs, FXðxÞ and FXðxÞ, which form the envelopes of the prob-
ability family

P ¼ fPj8x 2 R; FXðxÞ 6 FXðxÞ 6 FXðxÞg: ð1Þ

A p-box thus represents an FXð Þ which is imprecisely
known except that it is within the two bounding CDFs. It can be
seen that FXð Þ and FXð Þ are the lower and upper probabilities of
the event X 6 x. Detailed background can be found elsewhere [7].
There are various ways to define p-boxes such as utilizing

Kologorox-Smirnow (K-S) confidence limits, Chebyshev’s inequal-
ity, or by distributions with interval parameters, depending on the
amount of available information [14].

The modeling of dependencies between probability boxes fol-
lows the concept of dependence between random variables. Both
Pearson correlation and rank correlation have been adopted for
p-boxes, but retaining their limitations known from probability
theory. Thus, copula models have been suggested to describe
dependence between p-boxes [15]. There are two main advantages
of using copulas for this purpose. First, copulas can account for var-
ious types of dependencies. Second, the copula is flexible in select-
ing the appropriate dependence model independently from
choosing the marginal distributions for each variable [16].

2.2. A brief introduction of copulas

A copula is a multivariate CDF for which the marginal distribu-
tion of each variable is uniform. According to Sklar’s Theorem, a
joint distribution can be expressed in terms of the marginal distri-
bution functions and a copula which describes the dependence
structure between the variables. Consider a d-dimensional random
vector X ¼ ðX1;X2; . . . ;XdÞ with margins FiðxÞ; i ¼ 1; . . . ; d. There
exists a copula C such that the joint CDF, denoted by
FXðx1; . . . ; xdÞ, can be written as

FXðx1; . . . ; xdÞ ¼ CðF1ðx1Þ; . . . ; FdðxdÞÞ: ð2Þ
There are two common classes of copulas; Gaussian and Archi-

medean. The Gaussian copula is used for the normal dependence
structure. This structure can be estimated from its only parameter
of a correlation matrix [17]. In a non-normal case, Archimedean
copulas are often used to model the dependence structure in the
data. The class of copula has a closed-form of representation,

Cðu1;u2; . . . ;ud; hÞ ¼ u�1 uðu1Þ;uðu2Þ; . . . ;uðud; hÞð Þ; ð3Þ

in which uis a generator with u�1 completely monotonic on
½0;1Þ� ½0;1Þ . . .� ½0;1Þ (d-dimensional copula). The copula
parameter, h, can be related to various dependence structures of
Archimedean copulas. The most common Archimedean copulas
include Clayton, Gumbel and Frank copulas which are summarised
in Table 1. Details about copulas can be found elsewhere, e.g., [18].

2.3. Estimation of copula parameter

Different copulas represent different dependence structures on
the data. Thus, we establish the copula model in two steps. Step 1
is devoted to estimate the parameters for a number of candidate
copulas. The copulas considered in this paper (e.g., Clayton, Gum-
bel and Frank copulas) involve only one parameter, denoted by h.
The copula parameter h can be estimated by the classical maxi-
mum likelihood estimation (MLE). The MLE yields a point estimate
of h.

In step 2 the best-fit copula model for the given observed data
and (point-) estimated parameter is selected. This is realized based
on the Akaike Information Criterion (AIC), which has particular

Table 1
Some common Archimedean copulas.

Copula Form Range of
h

Clayton Cðu1;u2; hÞ ¼ u1
�h þ u�h

2 � 1
� ��1=h (0, 1)

Frank
Cðu1;u2; hÞ ¼ �h�1 log 1þ e�hu1 �1ð Þ e�hu2 �1ð Þ

e�h�1

� �
R

Gumbel
Cðu1;u2; hÞ ¼ exp � � log u1ð Þð Þh þ � log u1ð Þð Þh

� �1=h� 	
[1, 1)
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