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a b s t r a c t

We look at the behavior of structural systems under the occurrence of seismic events with the aim of
identifying the fragility curves. Artificial Neural Network (ANN) empirical regression models are
employed as fast-running surrogates of the (long-running) Finite Element Models (FEMs) that are typi-
cally adopted for the simulation of the system structural response. However, the use of regression models
in safety critical applications raises concerns with regards to accuracy and precision. For this reason, we
use the bootstrap method to quantify the uncertainty introduced by the ANN metamodel. An application
is provided with respect to the evaluation of the structural damage (in this case, the maximal top dis-
placement) of a masonry building subject to seismic risk. A family of structure fragility curves is identi-
fied, that accounts for both the (epistemic) uncertainty due to the use of ANN metamodels and the
(epistemic) uncertainty due to the paucity of data available to infer the fragility parameters.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the aftermath of the Fukushima nuclear accident, the 5-year
project SINAPS@ (Earthquake and Nuclear Facilities: Ensuring and
Sustaining Safety) has been launched in France in 2013. One of
the key objectives of the project is the quantitative assessment of
the behavior of Nuclear Power Plants (NPPs) under the occurrence
of a seismic event. In the framework of this project, we made a pre-
liminary study on the behavior of a structural system subject to
seismic risk [1], with the aim of identifying the structure fragility
curve, i.e., the conditional probability of damage of a component
for any given ground motion level [2]. In this work, we complete
the previous analysis with the estimation of the associated
uncertainties.

Within the framework of analysis considered, in general the
actions, events and physical phenomena that may cause damages
to a nuclear (structural) system are described by complex mathe-
matical models, which are then implemented into computer codes
to simulate the behavior of the system of interest under various

conditions [3,4]. In particular, computer codes based on Finite
Element Models (FEMs) are typically adopted for the simulation
of the system structural behavior and response: an example is
represented by the Gefdyn code [5].

In practice, not all the system characteristics can be fully cap-
tured in the mathematical model. As a consequence, uncertainty
is always present both in the values of the model input parameters
and variables and in the hypotheses supporting the model structure.
This translates into variability in the model outputs, whose uncer-
tainty must be estimated for a realistic assessment of the (seismic)
risk [6,7].

For the treatment of uncertainty in risk assessment, it is often
convenient to distinguish two types: randomness due to inherent
variability in the system behavior (aleatory uncertainty) and
imprecision due to the lack of knowledge and information on the
system (epistemic uncertainty). The former is related to random
phenomena, like the occurrence of unexpected events (e.g., earth-
quakes) whereas the latter arises from a lack of knowledge of some
phenomena and processes (e.g., the power level in the nuclear
reactor), and/or from the paucity of operational and experimental
data available [3,8–12].

For uncertainty characterization, two issues need to be consid-
ered: first, the assessment of the system behavior typically
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requires a very large number (e.g., several hundreds or thousands)
of FEM simulations under many different scenarios and conditions,
to fully explore the wide range of uncertainties affecting the sys-
tem; second, FEMs are computationally expensive and may require
hours or even days to carry out a single simulation. This makes the
computational burden associated with the analysis impracticable,
at times.

In this context, fast-running regression models, also called
metamodels (such as Artificial Neural Networks (ANNs) [13–17],
Local Gaussian Processes (LGPs) [18,19] polynomial Response Sur-
faces (RSs) [7,20], polynomial chaos expansions [21,22], stochastic
collocations [23], Support Vector Machines (SVMs) [24] and kriging
[25–27], can be built by means of input-output data examples to
approximate the response of the original long-running FEMs

Nomenclature

a ground motion level
b index of the bootstrap training data sets or of the boot-

strapped regression models, b = 1, . . ., B
B number of the bootstrap training data sets or of the

bootstrapped regression models
CP coverage probability
D = {(Yn, dn), n = 1, . . ., N} entire data set
Dtrain = {(Yn, dFEMðYnÞ), n = 1, . . ., Ntrain} training data set
Dtrain,b bootstrap training data set, b 2 {1, . . ., B}
Dval = {(Yn, dFEMðYnÞ), n = 1, . . ., Nval} validation data set
Dtest = {(Yn, dFEMðYnÞ), n = 1, . . ., Ntest} test data set
E network performance (energy function)
f(Yn, w) regression function
fb(Yn, wb) bootstrapped regression function, b 2 {1, . . ., B}
F fragility curve
Fb fragility curve built on the basis of the b-th boot-

strapped regression function, b 2 {1, . . ., B}
F lower bound fragility curve due to the paucity of data
�F upper bound fragility curve due to the paucity of data
F lower bound fragility curve due to the model and the

paucity of data
F upper bound fragility curve due to the model and the

paucity of data
h optimal number of hidden neurons
IArias Arias intensity
j index of the inputs Y
L likelihood function
M number of input variables
n index of the data in a given set
N number of realization of the seismic event
NMW normalized mean width
Ntest number of test data
Ntrain number of training data
Nval number of validation data
p coverage indicator; p = 1 if the output is included in the

confidence interval; p = 0 otherwise
pgv Peak Ground Velocity
PSA(Tstr) spectral acceleration at the first-mode period of the

structure
RMSEANN root mean square error of the ANN trained with the

whole training data set Dtrain

RMSEBoot root mean square error of the bootstrap ensemble of
ANNs

SI spectral intensity
Tm mean period
Tp predominant period
Tstr fundamental period of the structure
Vs30 average shear wave velocity in the upper 30 m
w vector of parameters of the regression functions
wb vector of parameters of the b-th bootstrapped regres-

sion functions, b 2 {1, . . ., B}
X outcome of a seismic event (Bernoulli random variable)
xn realization of the Bernoulli random variable Xn

x = {x1, x2, . . ., xn, . . ., xN} vector of the realizations of the N Ber-
noulli random variable Xn, n = 1, . . ., N

y ground motion IMs
Y = {y1, y2, . . ., yi, . . ., yM} vector of M uncertain input variables
Z = {z1, z2, . . .} vector of system responses

Greek letters
a median ground motion intensity measure (IM)
â estimate of a
½a100ð1�hÞ%;a100ð1�hÞ%� 100(1 – h)% confidence interval of a
b logarithmic standard deviation
b̂ estimate of b

b100ð1�hÞ%;b100ð1�hÞ%
h i

100(1 – h)% confidence interval of b
1 – c level of confidence for the bootstrap-based empirical

PDFs
d target, maximal structural top displacement
dðYnÞ model output (maximal structural top displacement) in

correspondence of the n-th input vector Yn

dANN(Yn) estimate of the maximal structural top displacement
obtained by the ANN

dBootb ðYnÞ estimate of the maximal structural top displacement gi-
ven by one of the b-th bootstrapped regression func-
tions, b 2 {1, . . ., B}

�dBootðYnÞ average of the B estimates dBootb ðYnÞ, b = 1, . . ., B
dFEM(Yn) true maximal structural top displacement computed by

the FEM
d⁄ damage threshold

d100ð1�cÞ%ðYnÞ; d100ð1�cÞ%ðYnÞ
� �

100(1 – c)% confidence interval of
the quantity d(Yn)

e(Yn) Gaussian white noise
1 – h level of confidence for parameters a and b
ld Ynð Þ nonlinear deterministic function
r2
BootðYnÞ bootstrap estimate of the variance of r2

f ðYnÞ
r2
f ðYnÞ variance of the distribution of the regression function f

(Yn, w)
r2
e ðYnÞ variance of e(Yn)

U[�] standard Gaussian cumulative distribution

Acronyms
ANN Artificial Neural Network
CDF Cumulative Distribution Function
CP Coverage Probability
FEM Finite Element Model
GA Genetic Algorithm
IM Intensity Measure
LGP Local Gaussian Process
NMW Normalized Mean Width
NPP Nuclear Power Plant
PGA Peak Ground Acceleration
PDF Probability Density Function
RMSE Root Mean Square Error
RS polynomial Response Surface
SA Spectral Acceleration
SPRA Seismic Probabilistic Risk Assessment
SVMs Support Vector Machines

E. Ferrario et al. / Structural Safety 67 (2017) 70–84 71



Download English Version:

https://daneshyari.com/en/article/4927777

Download Persian Version:

https://daneshyari.com/article/4927777

Daneshyari.com

https://daneshyari.com/en/article/4927777
https://daneshyari.com/article/4927777
https://daneshyari.com

