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a b s t r a c t

To enhance computational efficiency in reliability analysis, metamodeling has been widely adopted for
reliability assessment. This work develops an efficient reliability method which takes advantage of the
Adaptive Support Vector Machine (ASVM) and the Monte Carlo Simulation (MCS). A pool-based ASVM
is employed for metamodel construction with the minimum number of training samples, for which a
learning function is proposed to sequentially select informative training samples. Then MCS is employed
to compute the failure probability based on the SVM classifier obtained. The proposed method is applied
to four representative examples, which shows great effectiveness and efficiency of ASVM-MCS, leading to
accurate estimation of failure probability with rather low computational cost. ASVM-MCS is a powerful
and promising approach for reliability computation, especially for nonlinear and high-dimensional
problems.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The assessment of failure probability is very important for a
structural system whose input parameters are generally subjected
to different levels of uncertainty. Therefore, it is interesting to per-
form probabilistic analysis to account for the uncertainties of input
parameters. Considering a structural system whose model
response Y is given by a computational model T:

Y ¼ TðXÞ ð1Þ

where X 2 Rd is a vector representing input parameters of this
physical system and d is the dimension of the problem. Given a
set of values of input vector X, Eq. (1) may give the corresponding
model response. In reality, the uncertainty in the input parameters
does exist, due to, for example, inherent soil variability or measure-
ment errors. In order to account for these uncertainties, input
parameters are often modelled as random variables following pre-
scribed distributions, like the normal distribution or the lognormal
distribution. The model response Y is therefore also a random
variable.

Under this circumstance, the failure probability of a structural
system can be defined by the following multi-dimensional integral
expression:

Pf ¼
Z

� � �
Z

I½GðxÞ�f ðxÞdx ð2Þ

where x is a realization of the d-dimensional random vector X sam-
pled from the joint probability density function (PDF) f(x); G(x) = 0
is the limit state surface of the structural system, G(x) < 0 defining
the failure domain and G(x) > 0 the safe domain. The indicator func-
tion I½GðxÞ� is equal to 1 for GðxÞ 6 0, otherwise I½GðxÞ� ¼ 0. The limit
state surface G is often determined by the computational model T
and a given threshold. For instance, if the computational model T
predicts the deformation of a specified position of a considered sys-
tem, and the maximum allowable deformation at that position is
denoted by S

0
, then the limit state function G(x) can be written as:

GðxÞ ¼ TðxÞ � S0 ð3Þ
It is common to transform the random variables x into a stan-

dard space, which is composed of independent standard normal
variables u, by means of the Nataf transformation [40] or the
Rosenblatt transformation [41]. Then the failure probability can
be reformulated in the standard normal space as:

Pf ¼
Z

� � �
Z

I½gðuÞ�uðuÞdu ð4Þ

where uðuÞ is the standard normal PDF and g(u) = G(x(u)) repre-
sents the transformed limit state function in the standard normal
space.
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The exact calculation of the integral of Eq. (4) is generally not
practically feasible, especially for high-dimensional problems.
Alternatively, some approximated approaches have been devel-
oped to address this problem, such as the first-order and second-
order reliability method (FORM/SORM), the Monte Carlo Simula-
tion (MCS), the response surface method (RSM).

The most straightforward and robust one is the MCS, and it pro-
ceeds in three steps: (1) randomly sampling nMC sets of input
parameters according to underlying PDFs, (2) repeatedly running
G for all samples and (3) post-calculating the failure probability
or the statistical moments. Then, Eq. (4) can be approximated by:

bPf ¼ 1
nMC

XnMC

i¼1

I½GðuiÞ� ð5Þ

where ui represents the ith MC samples. Eq. (5) is an unbiased esti-
mate of failure probability and its coefficient of variation (COV) is
evaluated by:

COVðbPf Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bPf

nMC
bPf

vuut ð6Þ

The classical Monte Carlo Simulation is dimension-
independent, and often regarded as a standard reference for the
test of other probabilistic methods because of its versatility and
robustness. However, it suffers from a quite low computational
efficiency. This makes it hardly applicable for computationally
expensive models, such as the finite element or finite difference
numerical solvers, especially when the failure probability is rather
small.

Recently, a metamodel-based Monte Carlo method has gained
considerable attention in the community of reliability analysis.
The core idea of this method is to firstly build an analytical meta-
model (or the response surface) with limited calls to the original
model based on the Design of Experiments (DoE), and then per-
form Monte Carlo Simulation on the obtained metamodel. The
metamodel should be capable of catching the global behavior of
the original model responses. There are several mathematical tools
available to construct such a metamodel, e.g. polynomial chaos
expansion (PCE), Kriging model and Artificial Neural Networks
(ANN). The polynomial chaos expansion (PCE) is used to build a
metamodel. A Collocation-based Stochastic Response Surface
Method (CSRSM) on the basis of PCE was applied by researchers
to perform probabilistic analysis [1,2]. However, the PCE suffers
from the ‘‘curse of dimensionality”. The size of the DoE rapidly
increases with the number of the input variables and with the
PCE order. In order to enhance the applicability of PCE, a sparse
polynomial chaos expansion (SPCE) was proposed by Blatman
and Sudret [3,4] which results in less terms than a full PCE. The
Kriging model [5,6] and ANN [7,8] also attract more and more
interest for probabilistic assessment.

Another powerful vehicle for the metamodel construction is the
Support Vector Machine (SVM) developed by Vapnik [9,10] in the
field of statistical learning theory. It has the following merits
[11–15]: (1) In a SVM decision function, only support vectors
which are a small fraction of the training set contribute to the
model predictions (see Eq. (10)). This feature makes the model pre-
dictions more efficient compared with other surrogate models, the
Kriging model for example. (2) The SVM makes advantage of the
Structural Risk Minimization that minimizes an upper bound on
the generalization error. This also gives SVM good performance
on avoiding overfitting and on generalization. (3) The SVM deals
with classifications of model responses, for example the safe state
(labeled as +1) and failed state (labeled as -1) in structural stability,
which makes it applicable for Monte Carlo Simulation for which

only the ‘‘sign” of the model response instead of the exact value
is of interest in the computation of failure probability. (4) The
SVM is able to bypass the curse of dimensionality and handle
highly nonlinear problems effectively, e.g. non-convex and disjoint
limit state functions.

Many papers have been devoted to application of the Support
Vector Machine (SVM) to reliability analysis recently. The pioneer-
ing work appears to be done by Rocco and Moreno [11] who firstly
combined Monte Carlo Simulation and Support Vector Machine for
reliability analysis. Hurtado, J. E. [16] developed a reliability algo-
rithm based on Importance Sampling and SVM which is shown
to be rather computationally efficient with respect to conventional
Importance Sampling method. Li et al. [15], Zhao [17] and Zhao
et al. [18] proposed a reliability method combining the SVM and
the FORM and tested their methods on slope and tunnel reliability
analysis. Tan et al. [19] reported four response surface methods
which are respectively based on radial basis neural network (RBFN)
and SVM for reliability analysis. No obvious difference was found
between RBFN-based RSMs and SVM-based RSMs. Bourinet et al.
[20] proposed an approach termed as ‘‘2SMART” which combines
Subset Simulation and SVM (SS-SVM). This approach is able to deal
with reliability problems involving small failure probabilities and
large numbers of random variables (up to a few hundreds). Ji
et al. [21] applied the least-squares support vector (LS-SVM) in
combination of Monte Carlo Simulation to assess slope system reli-
ability. It is shown that the LS-SVM is effective to evaluate system
probability of a complex slope involving several failure regions.
The aforementioned research on application of SVM to reliability
analysis mainly follows the procedures of firstly constructing the
response surface using SVM based on the Design of Experiments
(DoE) and then computing the failure probability or reliability
index by using probabilistic approaches (e.g. FORM or MCS) thanks
to the surrogate model obtained. Therefore, the effectiveness and
efficiency of these methods highly depends on how to train the
SVM model, with a required accuracy at the cost of the smallest
size of DoE (training samples). The uniform design for the DoE is
highlighted by Li et al. [15] and Ji et al. [21] for this purpose.
Another more efficient technique is to use an adaptive SVM which
aims to build a surrogate by sequentially selecting informative
samples. Several adaptive SVM models can be found in Song
et al. [14], Tong and Koller [22], Basudhar and Missoum [23].

This work aims to develop an efficient reliability method named
ASVM-MCS which combines Adaptive Support Vector Machine in
conjunction with Monte Carlo Simulation. The remainder of this
paper is outlined as follows. The basic theory about how a SVM
classifier works is presented in the Section 2. The following section
introduces adaptive SVM and details the proposed ASVM-MCS
algorithm. Four representative examples for the validation of the
ASVM-MCS are given in Section 4. This paper ends up with a con-
clusion at Section 5.

2. A basic introduction to Support Vector Machines

The support vector machine (SVM) is an efficient classifier orig-
inated from pattern recognition in machine learning. For a two-
category problem, the SVM training algorithm aims at building a
hyperplane that separates all training data of one category from
those of the other category. The SVM has been successfully applied
to wide applications [22,24], ranging from pattern recognition,
hand-written characters recognition, text classification to biologi-
cal sciences. Recently, it has attracted more and more attention
in reliability analysis. This section simply presents an overview
of the SVM algorithm. For more details, the reader is referred to
Vapnik [9,10] .
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