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a b s t r a c t

Reliability analysis under incomplete probability information is a challenging task. This paper focuses on
the extension of the subset simulation (SS), an efficient reliability approach, to the modeling of any
dependent random variables under incomplete probability information. The Nataf transformation is com-
monly adopted to generate correlated random variables given marginal distributions and correlations;
however, it inherently assumes a Gaussian dependence structure. In contrast, the Rosenblatt transforma-
tion can be used to generate correlated random variables with any dependence structure; however, the
joint probability information must be known. To remove the limitation, the vine copula approach, which
is highly flexible in dependence modeling, is used to reconstruct the joint probability information from
the prescribed marginal distributions and correlations. The copula parameters in the vine structure are
retrieved using an efficient approximation method. Three copula cases including the Gaussian and
non-Gaussian dependence structures are investigated by applying the proposed method to a numerical
example. The failure probabilities and the effects of the uncertain parameters correspond to different
cases are compared, which aims to provide insights into the impact of the dependence structure on
the SS results when only the incomplete probability information is given.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The uncertainty involved in engineering systems necessitates
the use of probabilistic methods to enable reliable design. The gen-
eric formulation of the failure probability can be expressed as:

Pf ¼
Z
GðXÞ60

f ðXÞdX ð1Þ

where f ðXÞ is the multivariate probability density function (PDF) of
the random variable vector X, GðXÞ 6 0 defines the failure domain
of interest and, particularly, GðXÞ ¼ 0 shapes the limit state surface
(LSS).

The analytical solution to the above integral is difficult to derive
due to the multi-dimensions of the problem and the complicated
failure domain. A number of methods have been developed to
approximate the failure probability [1–5]. Among the various
approximation methods, the Monte Carlo simulation (MCS) is
widely used due to its conceptual simplicity and computational

robustness [6]. However, when using the crude MCS, the computa-
tional cost can be unacceptable if the failure probability to be esti-
mated is small, which motivates many researchers to improve the
algorithm efficiency [7–10]. Among these works, the subset simu-
lation (SS) [11–13] has been identified as the most successful one
because of its high efficiency in generating rare events and insen-
sitivity to dimensions [14]. Many studies have demonstrated the
potential of the SS in estimating small probabilities [15–17] or
quantifying the effects of uncertain parameters on failure probabil-
ity [18–19]. The success of SS lies in the efficient simulation of
samples conditioned on a series of nested intermediate events with
relatively larger probabilities, which is achieved using the Markov
Chain Monte Carlo (MCMC) with a modified Metropolis algorithm
(MMA) [11]. Several variants of the SS have also been developed
[20–22]; yet, none of the variants present a significant improve-
ment compared to the original algorithm [23].

Compared to the many efforts devoted to developing novel
strategies of generating conditional samples, few attentions are
given to the generation of correlated random variables. Generally,
the correlated random variables can be generated by independent
ones through isoprobabilistic transformations [17]. For example,
generating a random vector with dependent elements can be
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achieved by first generating a sample U from the independent
standard normal space (U-space) and then converted to the origi-
nal space by using the mapping relationship U ¼ TðXÞ. If f ðXÞ is
available, the Rosenblatt transformation [24] can be applied to
achieve this goal. Unfortunately, the data needed for characteriza-
tion of f ðXÞ are frequently not available to a sufficient extent and
quality [25]. In practice, the probabilistic description of X is usually
given in terms of marginal distributions and correlations, which is
referred to as the incomplete probability information [26]. In such
case, the Nataf transformation is commonly employed because it
can generate a joint PDF (known as the Nataf distribution) that is
consistent with the prescribed marginal distributions and correla-
tions and can be simply generalized to multi-dimensions [27].
Essentially, the Nataf transformation assumes a Gaussian depen-
dence structure (normal copula) for correlated random variables.
However, recent investigation has shown that this assumption
does not always hold [24]. To address the limitation, the copula
approach can be used to reconstruct the joint probability distribu-
tion with non-Gaussian dependence structure based on the incom-
plete probability information, and thus generate non-Gaussian
dependent random variables [12]. The copula parameter that indi-
cates the strength of dependence is related to the correlation one
by one. However, this copula-based reconstruction of joint proba-
bility distribution with non-Gaussian dependence structure is
mainly restricted to the bivariate cases [28–30]. If the dependence
structure has to be characterized by a non-elliptical copula, this
reconstructing method cannot be generalized to the multivariate
cases [31]. For example, if an n-dimensional Archimedean copula
is used, there are at most n-1 copula parameters, while the number
of pair-wise correlation coefficients is n(n � 1)/2. As a result, the
number of the copula parameters is less than the number of corre-
lation coefficients except for the bivariate cases, which implies that
it is impossible to establish a one-to-one relationship between
them in multi-dimensions. This limitation can be attributed to
the inflexibility of the conventional multivariate copulas in repre-
senting the complex dependence structure.

This paper aims to provide a method of generating non-
Gaussian dependent random variables under incomplete probabil-
ity information and investigate the impact of different dependence
structures on SS results. To this end, the vine copula approach [32]
which uses nested bivariate copulas to construct the joint probabil-
ity distribution is adopted for dependence modeling. The relevant
vine copula parameters are retrieved from the incomplete proba-
bility information via an efficient approximation method. Using
different nested bivariate copulas, the joint probability distribu-
tions with different dependence structures are modeled, which is
further utilized for generating correlated random variables through
Rosenblatt transformation [24]. The proposed approach is illus-
trated with a retaining wall example involving mutually correlated
non-normal trivariates. Three dependence structures including the
Gaussian case and non-Gaussian case are investigated and the cor-
responding SS results are compared.

2. Subset simulation and efficient sensitivity analysis

2.1. Subset simulation

The basic idea of SS [11–13] is to progressively approach the
target failure region F through a sequence of nested subsets of
the random space:

F � Fm � Fm�1 � . . . � F1 � F0 ¼ Rn ð2Þ
By conditioning on the intermediate failure regions

F1; F2; . . . ; Fm, the failure probability can be expressed as:

PðFÞ ¼ PðF1Þ
Ym
j¼2

PðFjjFj�1Þ � PðFjFmÞ ð3Þ

Without loss of generality, suppose that the intermediate
and target failure regions are defined as Fj ¼ fY ¼ GðXÞ < yj;
j ¼ 1; . . . ;mg and F ¼ fY ¼ GðXÞ < y�g, respectively, wherein the
thresholds satisfy that y1 > y2 > . . . > ym > y� (y� is the threshold
that defines the targeted failure region). Then, Eq. (3) becomes:

PðFÞ ¼ PðY < y1Þ
Ym
j¼2

PðY < yjjY < yj�1ÞPðY < y�jY < ymÞ ð4Þ

In practice, the response values pertinent to the simulated samples
are sorted in an ascending order, and yj are determined as the
p0-percentile of the sorted values so that PðF1Þ and
PðFjjFj�1Þj ¼ 1; . . . ;m equal to a constant value of p0.

The conditional samples cannot be efficiently generated by the
crude MCS. Au and Beck [11] proposed a method of sampling from
the conditional distribution based on the MMA. The main advan-
tage of the MMA is that it is efficient in simulating samples with
independent elements in high-dimensional space [11]. For details
of the implementation procedure of SS, readers are referred to
[11–13,22,23].

2.2. Sensitivity analysis based on conditional samples

Insights into the effects of parameter uncertainties on the sys-
tem failure probability are of great value for revealing the failure
mechanism. Using the Bayesian Theorem, the conditional failure
probability can be computed by:

PðFjxÞ ¼ PðFÞPðxjFÞ
PðxÞ ð5Þ

where PðFÞ can be calculated by Eq. (3) and PðxÞ is the prescribed
marginal distribution of the uncertain parameter x. Thus the critical
step to obtain PðFjxÞ becomes to the estimate of PðxjFÞ, which
depicts the distribution of x given that the system has failed. Since
the SS is efficient in generating failure samples, PðxjFÞ can be readily
obtained from the corresponding histogram. Based on the Total
Probability Theorem, PðxjFÞ is given as:

PðxjFÞ ¼
XM
j¼1

PðxjXj \ FÞPðXjjFÞ ð6Þ

where fXj; j ¼ 0;1; . . . ;Mg is the mutually exclusive sets partition-
ing the sample space; M is the desired number of subsets and
M P m (M ¼ m indicates that the algorithm stops immediately after
that the target region is reached while M > m means that the sim-
ulation continues until a desired number of subsets are generated):

X0 ¼ �F1 ¼ fY P y1g
Xj ¼ Fj � Fjþ1 ¼ fyj > Y P yjþ1g; j ¼ 1;2; . . . ;M � 1
XM ¼ FM ¼ fY < yMg

ð7Þ

PðXjjFÞ can be calculated by:

PðXjjFÞ ¼ PðFjXjÞPðXjÞ
PðFÞ ð8Þ

where PðFjXjÞ is simply estimated as the fraction of the failure sam-
ples in Xj, and

PðX0Þ ¼ 1� p0

PðXjÞ ¼ pj
0 � pjþ1

0 ; j ¼ 1;2; . . . ;M � 1
PðXMÞ ¼ pM

0

ð9Þ
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