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a b s t r a c t

This work develops some foundations of topology optimization for the robust design of structural systems
subjected to general stationary stochastic dynamic loads. Three methods are explored to evaluate the
dynamic response – the time domain, frequency domain, and state space methods – and the associated
design variable sensitivities are derived analytically. The resulting stochastic dynamic topology optimiza-
tion problem is solved using the gradient-based optimizer Method of Moving Asymptotes (MMA).
Sensitivities are computed using the adjoint method and the popular Solid Isotropic Material with
Penalization (SIMP) is used to achieve clear existence of structuralmembers. The approach is used to design
the lateral load systems of structures that minimize the variance of the system response to stationary
stochastic groundmotion excitation. Numerical results are presented to illustrate the differences between
topologies optimized for stochastic ground motion and topologies optimized for equivalent static loading.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

With applications from the design of material micro-structures
to large scalemechanical systems, topology optimization is advanc-
ing rapidly as a form-finding methodology for load-carrying sys-
tems. As the vast majority of work to date considers static and
deterministic loads, here we propose the foundations for applying
topology optimization to systems subjected to random vibrations.
The goal is to identify a design that, to the largest extent possible,
mitigates the effects of stochastic dynamic excitation through an
optimal structural configuration given a set of constraints. The
methodology is explored herein through the optimization of build-
ing frame systems subjected to stationary stochastic ground
motions.

There is a rich history of structural optimization of frames and
trusses for static loads, dating back to the early 20th century when
Michell [1] used Maxwell’s Theorem to design uniformly stressed
frames under single load cases. These so-called Michell structures
have been studied extensively by a number of researchers [2–5]
and have been used to guide structural design in practice [6]. More
generally, topology optimization has been applied as a free-form
methodology to design building frame structures under static
loads. Mijar et al. [7], and later Liang et al. [8], used continuum
topology optimization to establish ‘‘conceptual” designs for the lat-
eral bracing of pre-defined frame structures. More recently, Strom-

berg et al. [9] applied pattern constraints to achieve repetition of a
local lateral bracing topology along a building height.

Beyond deterministic static topology optimization, the concept
of reliability-based topology optimization (RBTO) for static loadings
have attracted a great deal of interest. In the context of RBTO, Khar-
manda et al. [10] were among the first to consider reliability anal-
ysis in the objective function. This has subsequently been
extended to the design of, for example, MEMS devices [11], trusses
with geometric imperfections [12], and geometrically nonlinear
structures using both probabilistic [13] and non-probabilistic
methods [14]. Meanwhile, the more broadly-define topic of
reliability-based design optimization has attracted much attention
in the past 20 years. Although we are specifically interested in
topology optimization-based approaches in this work, the reader
may be interested in works such as those by Yuon and Choi [15]
who consider a variety of probabilistically posed constraints, Kang
et al. [16] who present a non-probabilistic approach, Maute et al.
[17] who employ the spectral stochastic finite element method, Li
and Au [18] who proposed a simulation based approach using sub-
set simulations, and Cho and Lee [19] who propose the sequential
optimization and reliability assessmentmethod, to name just a few.

While the efforts to optimize structures for static conditions
have been inspiring, the next generation of structural optimization
must consider the true dynamic conditions of the loads placed on
our structures. To this end, several researchers have considered
structural optimization in a dynamic setting. This has included
maximizing the natural frequency of structures in free vibration
(e.g. [20]), as well as considering deterministic dynamic loads with
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structural response computed in the time or frequency domain.
Lim et al. [21] performed dynamic response optimization using
an active set recursive quadratic programming (RQP) algorithm.
Chahande et al. [22] and Min et al. [23] minimize the dynamic
compliance under dynamic loads using time history analysis.
Wang et al. [24] investigated several formulations of 1st order
and 2nd order differential equations for transient dynamic
response optimization. Spence et al. [25] considered dynamic
response optimization of structures under wind loads. The sensi-
tivity analysis required to guide design updates under transient
loads has been studied in several works ([26–29]), with particular
discussion on the computational aspects available in [30]. Exam-
ples of structural optimization in the frequency domain include
the work of Ma et al. [31] who used Optimality Criteria methods
and, for topology optimization, the work of Yoon et al. [32] who
used model reduction schemes.

The nature of the dynamic environment in which real structures
operate are often highly uncertain. This has given rise to the vast
study of stochastic dynamics in which a structure (deterministic
or stochastic) is subjected to dynamic loading represented as a
stochastic process. Such analysis is common, for example, for eval-
uating the structural response to seismic ground motion or wind
pressure, determining response of machine components in a vibra-
tory environment, or in the assessment of vehicle response (e.g.
automobile suspension systems, aircraft frames, ship hulls, etc.).
While some topology optimization researchers have begun consid-
ering uncertainties under static loads, including uncertainties in
load magnitudes and directions (e.g., [33–36]) and uncertainties
in structural geometry and material properties (e.g., [37–39,12]),
only a few researchers have considered the optimization of struc-
tures subject to the random dynamic excitation that is common
for many real structures, and nearly all of these works are limited
to the case of white noise excitations. For example, Yang et al. [40]
studied the optimal design of passive energy dissipation systems
using performance metrics. Rong et al. [41] used the Evolutionary
Structural Optimization (ESO) method to optimize continuum
structures under white noise excitations in the frequency domain
while Pagnacco et al. [42] similarly investigated ESO of structures
subject to white noise with fatigue constraints – also in the fre-
quency domain. Recently, Lin et al. [43] used topology optimization
to design piezoelectric energy harvesting devices subjected towhite
noise randomvibrations. Qiao et al. [44] consideredboth static loads
and white noise stochastic loads for the layout optimization of
multi-component structures. Rong et al. [45] also developed a
sequential quadratic programming (SQP) method for topology opti-
mization of structures under white noise excitation. Those that are
not confined to white noise excitations, such as the works by
Taflanidis and Scruggs [46] and Gidaris and Taflanidis [47] do not
explicitly consider the structural topology itself in the optimization.
Instead, these works aim to optimize the inter-story damping coef-
ficients which, while important, does not afford the design flexibil-
ity of topology optimization. To the authors’ knowledge, the only
existing work that considers topology optimization for non-white
noise stochastic dynamics is the work of Bobby et al. [48] who opti-
mize the structural weight subject to certain performance metrics
which requires reducing the structural system and performing
topology optimization on an approximate sub-problem.

This optimization under non-white noise stochastic dynamic
loading is the context of the current work. Specifically, we develop
the mathematical framework for topology optimization of linear
structures subject to general stationary Gaussian stochastic
dynamic excitation. We take, as the objective of our optimization,
the minimization of the response variance at a point on the struc-
ture and construct three alternative methods based on time
domain, frequency domain, and state space methods for perform-
ing the sensitivity analysis to drive the design optimization. The

analytical sensitivity analysis in the state space solution is enabled
by an efficient algorithm for modal decomposition to calculation
stochastic response developed by Igusa [49]. The resulting algo-
rithm is then demonstrated on braced frame systems subject to
stochastic base excitation and discussion of the methods and
results are provided throughout.

2. Topology optimization formulation

The goal of topology optimization is to optimally distribute
material within a design domain. In the case of structural building
design, this typically means determining the location, size and con-
nectivity of structuralmemberswithin the building framing system.
For frames (and trusses), the topology optimization problem is often
formulated using the ground structure approach where the design
domain is densely meshed with frame (or truss) elements and the
optimization algorithm is used to determine which elements are
to remain in the final topology. Although existence problems are
discrete (a member exists or it does not exist), we relax the discrete
condition to allow use of gradient-based optimizationmethods and
drive the continuous design variables to binary solutions using the
popular Solid Isotropic Material with Penalization (SIMP) [50].
Although typically used in continuum domains, including to design
conceptual lateral bracing in buildings (e.g., [7]), the approach is
illustrated by optimizing the bracing scheme in frame structures.
Sensitivities are computed to determine local descent directions
of the constrained objective function at every iteration, and these
are then utilized by the gradient-based optimizerMethod ofMoving
Asymptotes (MMA) [51,52] to compute design step decisions.

In this work, we focus on robust design and aim to minimize the
variance of response quantity ZðtÞ representing the stochastic
response of a structure subject to stationary and Gaussian random
vibration under the condition that the total material usage is lim-
ited. More formally, this is expressed as

min f ¼ r2
Z

s:t: ðKðqÞ �x2
i MÞ/i ¼ 0; for i ¼ 1; . . . ;n

qTv 6 Vmax

0 6 qe 6 1 8e 2 X ð1Þ
where response quantity ZðtÞ can be any response quantity that is a
linear function of the modal coordinates. In our applications, it is a
displacement. K is the structural stiffness matrix, M is the mass
matrix, xi are the generalized eigenvalues, /i are the generalized
eigenvectors, q is the vector of design variables, and qe is the mag-
nitude of the design variable for element e. The second constraint is
the material usage constraint with v being the vector of elemental
volumes and Vmax the maximum allowable volume of material. The
last set of constraints over the design space X are design variable
bounds where qe ¼ 1 indicates the element exists in the final topol-
ogy and qe ¼ 0 indicates element removal.

As previously stated, the popular SIMP method is employed to
achieve approximately binary design variables. In the SIMP
method, the element stiffness matrix is defined as

KeðqeÞ ¼ qg
e þ qe;min

� �
Ke0 ð2Þ

where the exponent g is used to ensure qe ! 0;1; qe;min is a nomi-
nal minimum value (set to 1e-4) to guard against singularities in K,
and Ke0 is the nominal element stiffness given its full attributes
(i.e. qe ¼ 1). A continuation method is used on the SIMP exponent
to help avoid local minima, as is commonly done in topology opti-
mization. The problem is first solved using an exponent g ¼ 1. The
exponent is then increased by one and the problem re-solved using
the previous solution as the initial guess. This process is repeated
until the optimized solution contains a negligible number of inter-

M. Zhu et al. / Structural Safety 67 (2017) 116–131 117



Download English Version:

https://daneshyari.com/en/article/4927781

Download Persian Version:

https://daneshyari.com/article/4927781

Daneshyari.com

https://daneshyari.com/en/article/4927781
https://daneshyari.com/article/4927781
https://daneshyari.com

