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a b s t r a c t

Structural reliability analysis is conventionally based on a description of uncertainty via a joint probabil-
ity density function (JPDF). This paper builds on an alternative concept of working with a probability dis-
tribution class, which is the set of all distributions that satisfy several prior pieces of information. A
multivariate probability class is introduced given the first- and second-moment information and the con-
dition on log-concavity of the JPDF, which is versatile enough to cover the majority of multivariate prob-
abilistic models that are typically used in reliability applications. Owing to the strong mathematical
properties of this class, it is shown that a reliability analysis in the multidimensional space of uncertainty
is reduced to a univariate problem, given the linearity of the failure surface with respect to uncertain
parameters. Therefore, a generalization of the Chebyshev inequality for the univariate class of distribu-
tions with a log-concave PDF is applied to calculate the upper bound of the probability of failure. The ben-
efit of this method is that fitting a JPDF, particularly with limited amounts of data, is facilitated, yet the
method provides a tight but not overly pessimistic estimate of the probability of failure. A bivariate
numerical example is provided for demonstration.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Structural reliability analysis is conventionally based on a
description of uncertainty via a joint probability density function
(JPDF). Methods, such as the method of moments or maximum
likelihood, are often used to estimate the parameters of an
assumed or justified probability model based on a set of data
points. In a multivariate setting, in addition to the choice of prob-
abilistic model, the correlations among the uncertain parameters
also need to be determined. Different techniques exist for estab-
lishing the JPDF based on a dataset, such as postulating a known
multivariate parametric model whose parameters should be esti-
mated, establishing the pairwise dependence of random variables
by using known bivariate probabilistic models, copula modeling,
or the conditional modeling approach; see, e.g., [1–3]. The proba-
bility of failure is then calculated as the total probability mass that
lies in a so-called failure region, as described by a set of perfor-
mance functions or safety margins.

The present paper builds on an alternative concept of working
with a probability distribution class. A distribution class is the
set of all probability distributions that satisfy a certain number of
prior pieces of information as constraints, with some directly based
on data and some by assumption. Such prior information can, for
instance, be distributional moment information, support of the dis-
tribution, or properties such as symmetry or unimodality of the
JPDF. Reliability analysis then becomes a matter of calculating
the minimum reliability or its complement, the maximum proba-
bility of failure, given any probability distribution belonging to this
set (often called a distributional set). The same methodology can
be applied when reliability-based design optimization is the focus,
in which case design parameters need to be chosen such that the
structure maintains a minimum level of reliability. The higher-
level problem of reliability-based design is formulated in this
paper, which also covers the lower-level problem of reliability
analysis. In this paper, this methodology is called a ‘‘distribution-
ally robust” framework, as it is commonly referred to by the opti-
mization community in relation to ‘‘distributionally robust
optimization”; see, e.g., [4–7]. In civil and mechanical engineering
communities, this concept is categorized under the theory of ‘‘im-
precise probabilities.” see, e.g., [8,9].
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The background for the proposed methodology is the situa-
tions with ‘‘little data”, and in particular ‘‘little multidimensional
data”. As noted in [10], which describes the motivation behind
this research in more detail, ‘‘in situations with little data, it is
difficult to ‘standardize’ a method for determining the best pos-
sible JPDF based on conventional uncertainty analysis methods;
an expert always has to be involved, and the experts might
not be consistent. The motivation was therefore to find out if
there is something that can make life easier by avoiding arguing
about distribution types and parameter fitting when faced with
limited data.”

A multivariate class of distributions is introduced in this arti-
cle, which builds on the first two distributional moments as
well as a so-called log-concavity constraint for the JPDF as
the prior information. This class can evidently also be applied
to univariate settings or to scenarios with the independence
of multiple uncertain parameters. The use of this class offers
some major benefits:

1. One does not need to assume or establish any specific probabil-
ity density functions. Establishing the probability density func-
tion (PDF) might be specifically challenging or somewhat
subjective in multivariate situations—i.e., when a JPDF is
involved—particularly when the number of available data
points is not large. Instead, here, one only postulates that the
JPDF has the specific property of being logarithmically concave.
This implies a relevant constraint on the shape and tail behavior
of the true probability distribution. As will be seen in this paper,
the assumption of log-concavity has the power of incorporating
a large number of parametric probability distributions com-
monly used in structural reliability analysis and might be a nat-
ural choice in many situations.

2. One only needs to extract the vector of means and the covari-
ance matrix from a multidimensional dataset. This is a simple
objective exercise, which may allow for working with data-
sets that do not contain a significant number of data points.
Still, since the first- and second- moment information are
combined with a realistic assumption on the shape of the dis-
tribution, i.e., log-concavity, the proposed probability bound
is considerably tighter than the bound obtained from the
application of the Chebyshev or unimodal classes of distribu-
tions. For the definition of the Chebyshev and unimodal
classes, see, e.g., [10,11] (these classes are also briefly dis-
cussed in Section 3.3).

In this paper, a log-concave distribution refers to a distribu-
tion whose JPDF is log-concave. Therefore, we are concerned
about a log-concave density class (or a log-concave PDF/JPDF
class), even though we simply call this class a ‘‘log-concave
class.” This is in line with the majority of references available
on the topic; see, e.g., [12–16]. It is also possible to define a class
of distributions based on the log-concavity of the cumulative
distribution function (CDF); see, e.g., [17,18]. The definition of
log-concavity based on the density function allows the exploita-
tion of the multivariate properties of the log-concave densities,
which is not possible if log-concavity is defined based on the
CDF. Such a multivariate performance of the log-concave densi-
ties provides the background for this article. This is despite the
fact that the log-concave CDF class is slightly larger than the
log-concave density class and covers few more parametric distri-
bution types; see, e.g., [18] for a list of parametric distributions
belonging to each class.

The paper is organized into five sections. Section 2 introduces
the concept of log-concavity and its properties before the main
result is presented in Section 3. Section 4 presents an application
example of the main result, and Section 5 concludes the paper.

2. Log-concavity and its properties

A function f : Rn ! R is convex if

f ðkxþ ð1� kÞyÞ 6 kf ðxÞ þ ð1� kÞf ðyÞ 8x; y 2 Rn and 8k 2 ½0;1�;
ð1Þ

and a function f : Rn ! R is concave if �f is convex. Graphically, a
function is convex if its epigraph (the area above the curve/surface)
is a convex geometry—i.e., a convex set of points—and a function is
concave if its hypograph (the area below the curve/surface) is a con-
vex geometry; see Fig. 1. The epigraph and hypograph of
f : Rn ! R are defined as

epi f ¼ fðx; tÞ 2 Rnþ1 : f ðxÞ 6 tg
hyp f ¼ fðx; tÞ 2 Rnþ1 : f ðxÞ P tg: ð2Þ

The concept of log-concavity is used in this paper. This concept
is directly defined for a probability density function (PDF) instead
of any arbitrary function, even though the definition would be very
similar for the arbitrary case. Here, the notation u is used for the
vector of uncertain parameters (or the random vector).

A multivariate probability density function f : Rnu ! ½0;1Þ is
log-concave if it can be expressed as the exponent of a concave
function, i.e., f ¼ expðuðuÞÞ, where u : Rnu ! ð�1;1Þ is concave.
An example is the multivariate normal density, where uðuÞ is a
concave quadratic in u, and therefore log-concave.

Equivalently, f : Rnu ! ½0;1Þ is log-concave if log f is a concave
function—i.e., if

log f ðku1 þ ð1� kÞu2Þ P k logðf ðu1ÞÞ þ ð1� kÞ logðf ðu2ÞÞ
8k 2 ½0;1� and 8u1;u1 2 Rnu

with convention log 0 ¼ �1:

ð3Þ

Many commonly used univariate parametric distributions have
log-concave densities. Examples include normal, Gumbel, expo-
nential, logistic, Laplace, Rayleigh, uniform, Weibull (with a shape
parameter greater than or equal to 1), gamma (with a shape
parameter greater than or equal to 1), power function (with a
parameter greater than or equal to 1), and beta distribution (with
both parameters greater than or equal to 1). For a more complete
list, see [18]. Several of these distributions are popular in structural
reliability applications. Distributions that are not log-concave
include lognormal and Pareto distributions. Several distributions
are selected here, and their densities, together with the logarithms
of their densities, are plotted in Fig. 2. As seen from the logarithmic
plots, all the hypographs (except for lognormal) are convex
regions, and thus the underlying PDFs are log-concave. The distri-
bution functions plotted here are the results of fitting distributions
to a set of data points based on the method of maximum likeli-
hood. The dataset has a mean value of 3.7 and a standard deviation
of 0.923 (see the numerical example). This paper is concerned with
the much more general case of multivariate densities. Therefore, a

Fig. 1. Convex vs. concave function f : Rn ! R.
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