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An efficient approach to reliability analysis of deteriorating structural systems is presented, which con-
siders stochastic dependence among element deterioration. Information on a deteriorating structure
obtained through inspection or monitoring is included in the reliability assessment through Bayesian
updating of the system deterioration model. The updated system reliability is then obtained through

coupling the updated deterioration model with a probabilistic structural model. The underlying high-
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dimensional structural reliability problems are solved using subset simulation, which is an efficient
and robust sampling-based algorithm suitable for such analyses. The approach is demonstrated in two
case studies considering a steel frame structure and a Daniels system subjected to high-cycle fatigue.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Engineering structures are generally subjected to deterioration
processes such as fatigue and corrosion, and their structural relia-
bility may thus reduce over time. Predictions of the deterioration
progress with quantitative models are uncertain due to the simpli-
fied representation of the actual deterioration phenomena, the
inherent variability of the influencing parameters and limited
information on those parameters. These uncertainties must be
addressed when modeling deterioration of structures [25,31,35].
Inspections and monitoring are effective means of obtaining infor-
mation on the actual condition of deteriorating structures. This
information should be utilized to reduce uncertainties in proba-
bilistic models. A consistent framework for this task is provided
by Bayesian analysis, in which prior probabilistic models are
updated with inspection and monitoring outcomes (e.g.
[64,29,11]). Ultimately, Bayesian analysis enables the quantifica-
tion of the effect of inspection and monitoring results on the struc-
tural reliability, and forms the basis for decisions on maintenance
actions and future inspection efforts (e.g. [66,13,37,59]).

Deterioration processes are generally correlated among struc-
tural elements within a system (e.g. [38,70,59,51]). This leads to
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a correlation among deterioration failures of different elements
whose effect on the system reliability has to be assessed as a func-
tion of structural redundancy [57]. In addition, correlation among
element deterioration is especially relevant when inspection and
monitoring outcomes are considered in the reliability assessment,
since it has an effect on what can be learned about the condition of
the system from individual inspections or measurements [70]. An
observation at one location within a structure contains more indi-
rect information on the deterioration progress at another location
if the correlation among element deterioration is high. For these
reasons, the reliability of deteriorating structures should be ana-
lyzed and updated considering the structure as a whole.

A number of publications propose methods for computing the
time-variant reliability of deteriorating structures, including works
by Mori and Ellingwood [40], Li [22], Ciampoli 7], Estes and Fran-
gopol [12], Stewart and Val [50] and Li et al. [23]. They consider the
time-dependent characteristics of both the load and resistance, but
do not account for correlation among element deterioration. More
recently, a number of researchers have considered modeling and
updating the system deterioration state of structures, taking into
account the aspect of spatial correlation among element deteriora-
tion [38,24,14,54,44,34]. Therein, the effect of inspections and
monitoring results on the probability of either reinforcement
corrosion in concrete structures or fatigue failures in steel struc-
tures is quantified using Bayesian analysis. However, the impact
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of deterioration on the structural reliability is not included in these
works. Such integrated system reliability analyses are proposed in
[21,28,45]. Lee and Song [21] consider sequential fatigue failures
taking into account the effect of stress redistribution within a
structural system. They identify critical failure sequences through
a branch-and-bound scheme and iteratively compute and update
bounds on the system failure probability. Luque and Straub [28]
and Schneider et al. [45] propose the use of hierarchical Dynamic
Bayesian Network (DBN) models for probabilistically representing
deterioration in structural systems and for updating deterioration
probabilities as well as the system reliability with inspection and
monitoring results. While they can be powerful, DBN models are
rather demanding in the implementation.

To enable an integrated system reliability analysis of inspected
and monitored deteriorating structures, which is computationally
efficient and simple to implement, we here develop a framework
using two coupled sub-models: a probabilistic system deteriora-
tion model, which considers stochastic dependence among ele-
ment deterioration, and a probabilistic structural model for
calculating the failure probability of the weakened system. Moti-
vated by the work of Straub and Der Kiureghian [57], the system
deterioration state is assessed at discrete time intervals and is con-
sidered constant within each interval. Information on the deterio-
rating structure obtained through inspection or monitoring is
included in the reliability assessment through Bayesian updating
of the system deterioration model. The updated system reliability
is then obtained through coupling this updated model with a prob-
abilistic structural model. The resulting structural reliability prob-
lems are high-dimensional since they include all (correlated)
deteriorating elements. To solve these problems, we apply subset
simulation, which is a sampling-based algorithm that can robustly
and efficiently handle problems involving a large number of ran-
dom variables. The method is demonstrated in two case studies
considering welded steel structures subjected to fatigue
deterioration.

2. System reliability analysis of deteriorating structures
2.1. Deterioration modeling

Deterioration is modeled at the element level at discrete time
steps. An element may be a structural member, a welded connec-
tion or a segment of a continuous surface [57]. The state of deteri-
oration of an element i at time t is represented by a random
variable or random vector D;;. For example, in the context of rein-
forcement corrosion in concrete structures, D;, may represent the
loss of reinforcement cross section. Deterioration of all elements
is influenced by a set of random variables X = (Xy, ..., X;,). The rela-
tionship between X and D; is described by a parametric deteriora-
tion model h;, which is written in generic form as:

Di; = hi(X, ) (1)

The joint probability density function (PDF) of X is denoted by
fx(x). Model uncertainties arising from a simplified representation
of the actual deterioration phenomenon are included through addi-
tional random variables in X.

All random variables describing the deterioration state of the
individual elements at time t are summarized in a vector
D; = (D1y¢,...,Dn,¢), where ng is the number of elements consid-
ered in the system reliability analysis. This vector represents the
overall deterioration state of the structural system at time t. The
relationship between the system deterioration state D, and the
deterioration model parameter X is described by a function h as:

D, = h(X,t) = (hy(X,1),... . h, (X, 1)) )

2.2. Modeling dependence among deterioration model parameters

Deterioration of different elements of a structural system is
generally interdependent due to the spatial correlation among
the uncertain parameters X influencing their condition. Such spa-
tial dependencies are often due to geometrical proximity, but they
mainly exist due to common factors influencing the element con-
dition such as environmental conditions and material characteris-
tics [28]. The aspect of spatial correlation of deterioration is
especially relevant when inspection and monitoring outcomes
are considered in the reliability assessment of deteriorating struc-
tures. The effect of such observations on the reliability strongly
depends on the spatial correlation among the parameters X. An
observation at one location contains more indirect information
on the deterioration progress at another location if the correlation
among the parameters X is high.

There is only limited information available on modeling statis-
tical dependence of deterioration in structural systems (e.g.
[70,33,27]). For example, Vrouwenvelder [70] estimated the corre-
lation among uncertain parameters influencing fatigue crack
growth in welded connections by comparing the scatter of the
parameters within one production series to the scatter in the over-
all population. In most applications, however, correlation among
the uncertain parameters X has to be estimated based at least par-
tially on engineering judgment.

Hierarchical models and random field models are commonly
applied to represent spatial dependence among the uncertain
parameters X. The latter are suitable for representing parameters
with inherent spatial variability (e.g. [18,51,33]). The random field
approach models a spatially varying parameter X as a random vari-
able X(z) at each location z, and describes the correlation structure
of the different random variables X(z) in terms of a suitable corre-
lation function. Such random fields are typically discretized to
enable their numerical representation (see, for example, [6]). As a
result, a random field of a spatially varying parameter is defined
by a discrete set of correlated random variables, which are part
of X. The joint distribution of the variables in a random field is
commonly represented by the Nataf model, also known as the
Gaussian copula [26].

Hierarchical models may be applied if common influencing fac-
tors can be modeled explicitly (e.g. [32,27]). Such models represent
correlation among random variables by defining different levels.
The random variables within one level are linked through common
influencing factors, which are modeled as random variables at a
higher level in the hierarchy. The random variables at the highest
level are often called hyper-parameters (see, for example, [32]).
The additional random variables representing common influencing
factors in a hierarchical model are included in X. The probability
distributions of the random variables in each level are defined con-
ditional on the random variables at the next higher level in the
hierarchy. Such a hierarchical dependence structure among the
variables in X can be implemented through the Rosenblatt trans-
formation [19].

In many instances, common influencing factors can, however,
not be modeled explicitly. Instead, statistical dependence among
the variables in X is often represented by correlation coefficients.
As an example, statistical dependence of fatigue deterioration
among welded connections due to common fabrication quality
may be modeled by defining a correlation coefficient between
the initial crack sizes at different hotspots [70]. In this case, the
Nataf model can be applied to model the joint distribution of the
correlated deterioration model parameters.

Parameters influencing deterioration can also be time variant.
Such parameters are ideally modeled by stochastic processes
(see, for example, [25,60,1]). Similar to a random field, a stochastic
process represents a time-varying parameter X as a random vari-
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