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a b s t r a c t

A fragility curve is a function that expresses the probability of failure of a structure or component as a
function of the intensity of external aggression. This paper proposes a general framework for the devel-
opment of analytical fragility functions from data based on the copula approach. Such a model allows for
any kinds of marginal distributions and dependence structures so that it can be applied to various types
of fragility data, analytical or empirical. The fragility function is then derived from the joint distribution of
intensity and damage measures. The Bayesian information criterion is used to select the most plausible
model among the candidate joint distributions, given the data. The practical implementation of the
methodology is illustrated by an analytical test case and by the evaluation of seismic fragility curves
for a reinforced concrete building. Several candidate marginal distributions, in agreement with the nature
and the physical properties of the variables (e.g. common intensity and damage measures take only pos-
itive values) are evaluated. In particular, seismic intensity measures are lognormal random variables
according to seismological models. This paper is focused on bivariate distributions but the case of vector
valued intensity measures can be treated accordingly.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A fragility curve is a function that expresses the probability of
failure of a structure or component as a function of the intensity
of external aggression. The intensity of the aggression is character-
ized by a ground motion Intensity measure (IM). The most popular
IM for the evaluation of fragility functions are the Peak Ground
Acceleration (PGA) and the Pseudo-Spectral Acceleration (PSA) at
a fundamental frequency of the structure. In the recent years, var-
ious methods to determine fragility curves have been proposed in
the literature. The increased interest is, among others, motivated
by the ongoing implementation of performance based earthquake
engineering (PBEE) procedures in civil engineering design. In the
US, the Applied Technology Council (ATC) [1] implemented the
PBEE methodology to be used for civil structures, in agreement
with the concepts developed at the Pacific Earthquake Engineering
Research (PEER) Center [2]. A comprehensive set of procedures to
estimate fragility functions from data is proposed in references
[3,1,4]. In particular, the fragility analysis methods depend on the

nature and number of available data. Epistemic uncertainties are
paid particular attention to in Liel et al. [5] and Celik & Ellingwood
[6]. In the nuclear sector, the seismic Probabilistic Risk Assessment
(PRA) dates back to the 70s and is now widely used for the evalu-
ation of plant safety [7].

Classical methods for the evaluation of fragility curves, when
input–output samples are available, are [8]:

� Method of moments e.g. [9,3]. It can be used when a sample of
capacities has been observed: this is the case in incremental
dynamic analysis [10] or when qualification tests until failure
are available.

� Maximum likelihood method, for example [11,12]. This method
requires demand data before and beyond failure.

� Fitting of a linear seismic demand model in the log-scale by
means of linear regression, e.g. [13,14]. This method is applica-
ble for any kind of data but it means extrapolation of the behav-
ior beyond yield if no failure is observed.

Both in PBEE and seismic PRA, the seismic fragility curves are
modeled as lognormal cumulative distribution functions.

In a recent contribution [15], Gaussian kernel smoothing has
been proposed to evaluate non parametric fragility functions. This
allows to develop functional forms without any assumption on the
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probability distribution. One botttleneck of this methodology is the
dependence of the estimations on the choice of the bandwidth. The
trade-off between robustness, over-fitting and accuracy is indeed a
major issue in the framework of Gaussian kernel smoothing. Gen-
erally speaking, a non parametric approach allows to overcome
model assumptions (such as lognormal probability distribution)
but at the expense of robustness. Parametric models posses the
advantage of reduced numerical cost and improved robustness. If
the parametric model is adequate, then the precision is higher at
the same cost (in terms of data). For example, it is well known that
extreme value distributions are good candidates for modeling peak
responses and common seismic motion intensity measures are log-
normal according to Ground Motion Prediction Equations (GMPE)
[16]. Any multivariate joint distribution can be written in terms
of the marginal distribution functions and a copula which
describes the dependence structure between the variables. This
approach is pursued in this paper: the fragility function is derived
according to its intrinsic definition as a conditional probability
from the joint distribution of the IM and the damage measure
(DM), where the latter is defined by the marginal distributions
and a copula. Copula models have been applied for reliability anal-
ysis and hazard assessment by various authors in the recent years
[17–24]. In a recent contribution, Goda [17] evaluates the joint dis-
tribution of peak and residual displacement seismic demands of a
simple structure. Moreover, a comprehensive introduction to the
copula technique is provided by that author. Tang et al. [19,20]
investigate the impact of different copula models when construct-
ing bivariate distributions for parallel systems and slope reliability
analysis.

This paper proposes a new, general framework for the develop-
ment of analytical fragility functions from data (continuous or dis-
crete, simulated or observed) based on the copula approach. In
what follows, we first give a short overview over common lognor-
mal fragility function fitting with a focus on analytical approaches
that do not require the scaling of accelerograms. Secondly, the cop-
ula based fragility function estimation is presented. The approach
is illustrated by an analytical test case and the application to seis-
mic analysis of a reinforced concrete building. For this purpose, a
Gaussian copula model is chosen.

2. Computation of analytical lognormal fragility curves

A fragility curve is a function that expresses the probability that
a structure or component submitted to an excitation of intensity a,
fails or reaches a previously defined damage state. As it is common
use, in what follows, random variables will be denoted by capital
letters while their realization are lower case. More precisely, if
damage or failure is assumed to occur when the design variable
or damage measure D exceeds a threshold d0 (which can be itself
a random variable), then the fragility curve is given by the follow-
ing conditional probability:

Pf ðaÞ ¼ P D > d0 j IM ¼ að Þ: ð1Þ

When discrete damage states are considered, then the damage
measure boils down to a Bernoulli random variable X, taking the
value x ¼ 1 when the damage state is reached and otherwise
x ¼ 0. This is the case, for example, when failure is defined as the
buckling of a structural element or for damage data from
post-earthquake field observations, where only the membership
to a certain damage state (e.g. ‘‘no damage”, ‘‘slight damage”, . . .,
‘‘failure”) can be assigned. In the latter framework, the fragility
function formally reads:

Pf ðaÞ ¼ P x ¼ 1 j IM ¼ að Þ: ð2Þ

When a lognormal model is adopted, then the fragility curve
can be expressed as:

Pf ðaÞ ¼ U
lnða=AmÞ

b

� �
; ð3Þ

where U denotes standard normal (Gaussian) cumulative distribu-
tion function (cdf) with standard deviation b and mean value ln
Am. The variable Am is the median of the lognormal distribution
and is also called median capacity.

2.1. Maximum likelihood estimator

The maximum likelihood method is of particular interest when
the damage (or failure) is not defined by a continuous but a dis-
crete state variable. In this framework, the dataset consists of N
pairs fai; xig. If the failure or damage criterion is reached, then
xi ¼ 1 and otherwise (no failure) it equals zero: xi ¼ 0. These events
arrive with probability Pf ðaÞ and respectively 1� Pf ðaÞ. For the log-
normal model, the latter can be calculated by expression (3). The
likelihood function for this problem reads:

L ¼
YN
i¼1

Pf ðaiÞ
� �xi 1� Pf ðaiÞ

� �1�xi ð4Þ

The estimators of parameters Am and b are solution of the fol-
lowing optimization problem:

ðÂm; b̂Þ ¼ argmin
Am ;b

ð� lnLÞ: ð5Þ

As pointed out in [4], the maximum likelihood estimator is
equivalent to generalized linear regression with a Probit link func-
tion. Prior information on median structural capacity Am or stan-
dard deviation b can be introduced by Bayesian updating, e.g.
[25,26]. This is the case, if either an expert opinion or previous
analysis are available. The profiled likelihood allows to evaluate
confidence intervals [27,28]. However, when the damage measure
is a continuous design variable, then information is lost by the
transformation to the discrete damage indicator. Indeed, only the
information on damage state membership is used while the dis-
tance to the threshold is disregarded. Moreover, this methodology
can not be applied when only few or no failures (or occurrences of
the damage state) are observed.

2.2. Linear regression

The linear regression approach [13,14] assumes a continuous
damage measure of the form

D ¼ bacg ð6Þ
where g is a lognormal random variable with unit median and log-
standard deviation equal to b. The linear regression is performed in
log space:

lnD ¼ ln bþ c lnaþ �; ð7Þ
where � is a centered normal random variable with standard
deviation r�. The regression parameters ln b; c and r� read:
c ¼ rrlnD=rln IM and ln b ¼ llnD � rrlnD=rln IMlln IM , where llnD; rlnD

and lln IM ; rln IM are the mean and standard deviations of variables
lnD and ln IM and r is the linear correlation coefficient. They have
to be approximated by their statistical estimator. Denoting by ei
the regression residual, an unbiased estimation of r2

� is given by
the formula [29]:

s2� ¼
1

n� 2

X
n

e2i :
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