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a b s t r a c t

The current response surface methods based on classifier usually fail to classify all samples correctly, thus
neglect the effects of the misclassified samples on the fitting function. To overcome this issue, an
improved multiple response surfaces method is proposed. It is mainly based on the techniques of sector
division and correct classification of samples. The main steps are: (1) compute a normalized inner pro-
duct coefficient between the closest sample to the origins and any other one, and sort samples by the
coefficient values; (2) select a reasonable number of sorted samples (i.e. range of normalized inner pro-
duct coefficient) for each sector to assure that the samples in the sector can be classified correctly; (3)
divide the overall space into multiple sectors based on such ranges and execute an approximation sector
by sector based on support vector machines. A main merit of this method is that it can approximate
implicit failure functions well as the number of samples is large enough due to the features of the correct
classification of all samples. In addition, it can be applied to both single failure functions and multiple
failure functions (explicit ones and enveloped ones). Numerical examples show that the proposed
method can achieve a good fitting of implicit failure functions, and the reliability results are accurate, too.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

For a mechanical structural system with uncertainty, the esti-
mation of its reliability provides valuable information. For a simple
structure, the failure function would be explicit and the reliability
analysis can be performed effectively by the first order reliability
method (FORM), the second order reliability method (SORM) or
Monte Carlo simulation (MCS). However, for a large and complex
structure, such failure function is usually implicit, complex (e.g.
piecewise and nonlinear) and in a high-dimensional space. In this
case, the conventional FORM, SORM and MCS would be less effi-
cient or accurate.

To overcome these difficulties, Der Kiureghian et al. [1,2] pro-
posed a search algorithm and strategies for finding the multiple
design points, and Katafygiotis [3,4] et al. developed a spherical
subset simulation method for solving high-dimensional reliability
problems. Numerical examples indicate that these measures need

no surrogate model and can increase the efficiency and accuracy
of reliability analysis.

Another strategy for dealing with the difficulties is to obtain an
explicit approximation (i.e. surrogate model) of the implicit failure
function of the structure before performing a reliability estimation.
As a useful tool for modelling and analyzing, the response surface
method (RSM) has attracted significant attention due to its compu-
tational efficiency and convenience in combination with common
software.

Faravelli and Bigi [5,6] discussed a stochastic finite element
method based on response surface approximation to analyze the
reliability of structural and mechanical systems whose geometrical
and material properties have spatial random variability. Bucher
and Bourgund [7] studied a new adaptive interpolation scheme
of updating polynomial to increase the efficiency and accuracy of
the response surface method in reliability calculations. Quite a
number of measures have been proposed to improve the efficiency
and accuracy of the conventional response surface method. These
improvements mainly concern approaches that use more complex
function models, such as complete quadratic polynomials [8],
higher-order polynomials [9], adaptive models with selected terms
[10], and artificial neural networks (ANN) [11–14]; and approaches
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that use efficient techniques to allow the approximation to be clo-
ser to the limit state function at the design point, such as the
weighted regression method [15,16] and the experimental points
moving schemes [17,18]. For a low dimensional case (e.g. less than
4 input variables), it is stated that such improvements are quite
capable of approximating failure functions of structural systems
[19,20]. However, the fitting accuracy would be largely affected
by the number of sample points, and the generalization error
would also increase largely as the number of input variables
increases, because these improvements are mainly based on the
principle of empirical risk minimization (i.e. fitting residual mini-
mization) [21].

Based on the statistical learning theory, an optimal way to min-
imize the generalization error of a learning machine is following
the principle of structural risk minimization for a high-
dimensional case. Support vector machines (SVM) are one of the
best options to follow this principle because they only use the sup-
port vectors rather than any other samples to fit a function. With
this unique property of SVM, an accurate fitting function and reli-
ability results can often be achieved [22–24].

As mentioned earlier, the real failure function of a large struc-
tural system would usually be of a complex structure and high-
dimensional. It is clear that a single response surface, whether it
is based on SVM, or polynomials, or ANN, cannot approximate
the real failure function well in this case. Thus, a reasonable way
is adopting multiple response surfaces to obtain an accurate
approximation [25].

Recently, the multiple response surfaces method has attracted
attention in slope reliability analysis [26,27]. In these applications,
each possible failure mode (i.e. slip surface) of the slope can be
identified by the Bishop method before using a quadratic polyno-
mial model to perform an approximation, and thus multiple failure
functions can be obtained one (failure mode) by one. Following this
way, an integral reliability can be estimated easily if the assump-
tion of a series system is adopted. Unlike the reliability problems
in a slope system, each failure mode of a large structural system
is difficult to be identified and is generally unknown before using
RSM to perform an approximation. Thus, Neves et al. [28] recom-
mended to regard the system failure function as an integral envel-
oped one with complex and high-dimensional characteristics and
use RSM to approximate the enveloped function directly.

A simple measure to achieve a good approximation of a com-
plex function is dividing the overall space into many hypercubes
based on the divided ranges of each variable, and obtaining an
approximation to the complex function in each hypercube
(see [29]). Note that such measure cannot be applied well to a
high-dimensional case because the needed number of hypercubes
(i.e. response surfaces) would increase exponentially as the
number of variables increases, resulting in a time-consuming
computation.

To reduce the computational cost, Mahadevan and Shi [30] pro-
posed an approach to approximate the real failure function with
multiple hyperplanes, and a way to calculate the failure probability
through the union or intersection of the failure domains corre-
sponding to each segment. Liu and Lv [31] proposed a similar
approach for response surfaces combination in reliability analysis.
One of the main advantages of these approaches is that they can be
useful for both component and system reliability problems. How-
ever, it is difficult to determine whether a failure domain defined
by the corresponding response surface contributes through a union
operation or an intersection operation to the overall failure domain
for reliability estimation, because such operation may vary largely
in different domains when the real failure function is of a complex
nature and high-dimensional. Thus, the multiple response surfaces
method still needs to be improved further in efficiency and
accuracy.

Herein, we propose a method for correct classification of sam-
ples to fulfill this demand, which is mainly based on the techniques
of sector divisions of the overall high-dimensional space and SVM.
The proposed method as well as an iterative algorithm is used to
achieve a converged solution in function fitting. The computational
efficiency and accuracy are also studied for the proposed method.

2. Classifying models

2.1. Short review of SVM

This section is devoted to a short description of the SVM
method of classification. More details can be found in [32,33].

Given is a set of N training samples (xi, hi) (i = 1,2, . . .,N) with
binary outputs h 2 fþ1;�1g corresponding to the two classes.
Assume that the two classes of training samples are linearly sepa-
rable. Then, two parallel hyperplanes H1 and H2 can be selected to
achieve separation, as shown in Fig. 1. Thus, the margin width
between these two hyperplanes is 2=kwk.

Based on the SVM theory, the optimal hyperplane H is the one
that represents maximum margin width and lies halfway between
the hyperplanes H1 and H2, which is expressed as the optimization
problem: maximize 2=kwk and subject to jwxi þ bj P 1 for all xi.
Then, the optimum linear classifier can be obtained by solving this
optimization problem, and it is given by

GðxÞ ¼ sgn
Xn
i¼1

a�
i hiðxi � xÞ þ b�

" #
ð1Þ

where sgnð�Þ means the sign function; ðxi � xÞ means the inner pro-
duct operation; ai⁄ and b⁄ are two relevant parameters to define the
optimum linear classifier. For most samples, a�

i ¼ 0. By comparison,
for support vectors, a�

i–0.

2.2. Quadratic function model

Let x denote the normalized vector of random variables,
x ¼ ½x1; x2; . . . ; xn�, where n is the number of variables. For a nonlin-
ear function fitting, a model of quadratic polynomials without
cross terms is often used. In this paper, such model is also selected
and a corresponding transformation from x space to z space is
given by

z ¼ ½x1; x2; . . . ; xn; x21; x22; . . . ; x2n� ð2Þ

Thus, in the z space, the optimum linear classifier is expressed by

GðzÞ ¼ sgn
Xn
i¼1

a�
i hiðzi � zÞ þ b�

" #
ð3Þ

It is known that such a classifier is actually a quadratic support vec-
tor machine (QSVM) in x space.
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Fig. 1. Optimal hyperplane for linearly separable case.
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