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a b s t r a c t

We describe a model to estimate event rates of a non-homogeneous spatio-temporal Poisson process. A
Bayesian change point model is described to detect changes in temporal rates. The model is used to esti-
mate whether a change in event rates occurred for a process at a given location, the time of change, and
the event rates before and after the change. To estimate spatially varying rates, the space is divided into a
grid and event rates are estimated using the change point model at each grid point. The spatial smoothing
parameter for rate estimation is optimized using a likelihood comparison approach. An example is pro-
vided for earthquake occurrence in Oklahoma, where induced seismicity has caused a change in the fre-
quency of earthquakes in some parts of the state. Seismicity rates estimated using this model are critical
components for hazard assessment, which is used to estimate seismic risk to structures. Additionally, the
time of change in seismicity can be used as a decision support tool by operators or regulators of activities
that affect seismicity.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we estimate the rates of a non-homogeneous
spatio-temporal Poisson process. The rates vary spatially with the
possibility of an independent temporal change at any point in
space. We use a Bayesian estimation approach and describe a
change point model to detect temporal changes. We describe a
likelihood comparison methodology to estimate spatially-varying
event rates using the change point model. The results from the
model are regions of estimated change, times of change, and spa-
tially varying event rates. The model is demonstrated through an
application to induced seismicity in Oklahoma.

Similar approaches for change detection have been used previ-
ously, for example, a Bayesian model was developed for Poisson
processes to assess changes in intervals between coal-mining dis-
asters [1]. A model was proposed to detect early changes in seis-
micity rates based on earthquake declustering and hypothesis
testing [2]. While there is some precedence, the problem described
in this paper is different than the previous ones because the event
rates vary spatially in addition to the possibility of a temporal
change. Estimation of these spatially varying rates requires an

appropriate rate smoothing procedure, which is also described
here.

The motivation for this paper is the significant increase in seis-
micity that has been recently observed in the Central and Eastern
US (CEUS) [3]. For example in 2014 and 2015, more earthquakes
were observed in Oklahoma than in California. There is a possibility
that this increased seismicity is a result of underground wastewa-
ter injection [e.g., 3–5]. Seismicity generated as a result of human
activities is referred to as induced or triggered seismicity. Fig. 1
shows the cumulative number of earthquakes with magnitude
P3 since 1974 for four quadrants of Oklahoma. There is a signifi-
cant increase in seismicity rate starting around 2008, though the
date and magnitude of rate increase varies among the different
regions. Hence, the times of change and the seismicity rates need
to be estimated individually for this spatio-temporal process.

There is a need to understand and manage the induced
seismicity hazard and risk [6,7]. The increased seismicity due to
anthropogenic processes affects the safety of buildings and infras-
tructure, especially since seismic loading has historically not been
the predominant design force in most CEUS regions. This makes the
seismicity rate a critical component for hazard assessment [8]. The
work in this paper will aid in effective risk assessment through
better future prediction of earthquakes in a local region using the
estimated spatially-varying seismicity rates. These rates would
aid in development of hazard maps, which are commonly used to
estimate the seismic loading during the structural design process.
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Additionally, identifying changes in seismicity rates can be used as
a decision support tool by stakeholders and regulators to monitor
and manage the seismic impacts of human activities [2].

The structure of the paper is divided into the description of the
model and its application on induced seismicity. In Section 2, we
describe a Bayesian change point model that is used to identify
changes in event rates, and to estimate the event rates before
and after the change. In Section 3, we present a methodology to
estimate event rates for a spatio-temporal non-homogeneous Pois-
son process. In Section 4, we apply this methodology to estimate
spatially-varying earthquake rates in Oklahoma. In Section 5, we
address some model limitations with examples from the applica-
tion in Oklahoma.

2. Bayesian model for change point detection

In this section, we describe a Bayesian change point model to
detect changes in event rates for a non-homogeneous Poisson pro-
cess with one change point. We also describe the algorithmic
implementation of the model.

2.1. Model

A Bayesian change point model to detect a change in event rates
is described by [1,9]. This model uses time between events to
detect a change in rates. Given a dataset of inter-event times, the
Bayes factor [10] is calculated to indicate whether a change in
event rates occurred. The Bayes factor is defined here as the ratio
of the likelihood of a model with no change to the likelihood of a
change point model, given the observed data.

B01ðtÞ ¼ LðH0jtÞ
LðH1jtÞ ð1Þ

where B01ðtÞ is the Bayes factor, t is a vector of inter-event times,
and H0 and H1 represent the models with no change and a change,
respectively. LðHjtÞ defines the likelihood of model H given some
observed data t. The two models, H0 and H1, are described below
and the final formulation of the equation to calculate the Bayes fac-
tor is given later in Eq. (21).

Values smaller than one for the Bayes factor indicate that the
model with change is favored over the model with no change.
The threshold value of the Bayes factor that indicates strong pref-
erence for one or the other model can be selected based on the
required degree of confidence, but typically values less than 0.01
or larger than 100 are used to favor one or the other model. If a
change is detected in the data, the time of change and event rates
before and after the change are subsequently calculated.

For a sequence of events in a non-homogeneous Poisson process
with a single change, the unknown variables of interest are the
time of change s, the event rate before the change k1, and the event
rate after the change k2.

kðsÞ ¼ k1; 0 6 s 6 s
k2; s < s 6 T

�
ð2Þ

where the observation period for events is defined as ½0; T�. Assume
that the zeroth event in the event sequence occurs at time 0 and the
nth event occurs at time T. The inter-event times are defined as

t ¼ t1; t2; . . . ; tnf g s:t:
X
i

ti ¼ T ð3Þ

where ti denotes the time between occurrences of the i� 1th and
the ith events.

Since the events follow a Poisson distribution with different
rates before and after the change, the inter-event times are expo-
nentially distributed and can be expressed as

f X
kðsÞðxÞ ¼ kðsÞe�kðsÞ x ð4Þ

where f XðxÞ denotes a probability distribution function of X; kðsÞ is
the parameter for the distribution (the event rate), and X is the ran-
dom variable (the inter-event time).

For the Bayesian framework, conjugate priors are defined for kj
as gamma distributions with parameters kj and hj [11]. Then the
prior probability distribution of the rates pðkjÞ is written as

pðkjÞ / k
kj�1
j e�kj=hj ð5Þ

where / is the proportionality symbol.
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Fig. 1. Cumulative number of earthquakes in four quadrants of Oklahoma with magnitudeP3 from 1974 through Dec 31, 2015. The earthquakes post 2008 are shown in pink
on the map, and the size of the circles is proportional to the earthquake magnitude. We have omitted the western panhandle of Oklahoma in this and all subsequent maps,
since no seismicity increase has been observed in this region, and to draw focus to the remainder of the state.
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