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a b s t r a c t

Networks are omnipresent, with examples in many different fields, from biological networks (such as the
nervous and cardiovascular system) to physical networks (such as roadways, railways, and electrical
power and water supply systems) to technological networks (such as the World Wide Web) and social
network (such as the community network among people or animals). This paper proposes a novel prob-
abilistic methodology to quantify the network reliability based on existing (diameter and efficiency) and
new (eccentricity and heterogeneity) measures of connectivity that incorporate link and nodal weights
and auxiliary nodes. Nodal and link weights are introduced to take into account the importance of the
components in the topology-based network model. Unweighted auxiliary nodes, locally refining the net-
work model, allow one to capture the complexity of the connections between weighted end-nodes. The
formulation presented in this paper is general and applicable to networks in different fields. The paper
illustrates the implementation of the proposed formulation considering a transportation network subject
to seismic excitation.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A network is generally defined as a system of interconnected
elements or nodes. Networks can be found in many different fields.
For example, in the human body, we find networks in the nervous
system, with neural networks connecting neurons with synapses,
and the cardiovascular system, with a complex net of blood vessels
connecting other systems, such as the respiratory, digestive or
muscular system. Examples of physical networks are those that
allow the transportation of people or resources, such as roadways
or railways, electrical power and water supply systems. Other
examples are technological networks, such as the World Wide
Web, and social networks, such as those among people or animals.
While in different fields, networks can often be modeled using a
common formulation. In recent years, many studies in statistics
dealt with technological networks and social networks. They
focused mainly on the state of the network, evaluating the impact
of a random or targeted attack [1–8].

Recent developments on the reliability of networks were made
in the context of physical networks, like transportation networks,
pipelines and other lifelines, vulnerable to seismic events [9–13].

Physical networks connecting communities and critical facilities
play indeed a strategic rule in the aftermath of extreme natural
events like large earthquakes, allowing for rescue and recovery
efforts. As pointed out by a review paper from Frangopol and Boc-
chini [14], researches in this field have followed different aspects,
including: (i) the interaction of bridges in a spatially distributed
system, (e.g., [15–18]); (ii) the variability in time of the characteristic
of a bridge network, (e.g., [19–22]); (iii) the interdependency among
different networks and the cascading failures (e.g., [23–27]); (iv) the
economic constraints in the life-cycle analysis of the network
(e.g., [28,29]). From a computational point of view, Monte Carlo
simulation methods have been widely used for the study of system
reliability (e.g., [30–33]). These methods have been applied to
transportation network reliability (e.g., [17,34–37]). Monte Carlo
simulation results are often a benchmark in the development and
application of non-sampling methods, such as the matrix-based
system reliability (MSR) method for transportation networks
[16,18,22].

Most of the current literature focuses on the failure of single
links of the network, and the concept of network failure in
topology-based models is typically defined as the loss of connec-
tion after a disturbance between some nodes and the rest of the
network. In this paper, the links are the only elements subject to
failure. This assumption is often verified in physical networks
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subject to hazardous event, where, for example, bridges, pipelines
and other lifelines are the most vulnerable elements. The network
reliability based on deterministic values of the measures of con-
nectivity currently adopted in the literature, such as the diameter
and the efficiency, presents however some limitations. First, the
measures of network connectivity have a variability that needs to
be considered for a better estimate of the reliability and service
reliability of networks. Second, while current approaches in
topology-based network models typically include weights to cap-
ture the different importance of links, they do not take into account
the different importance of the nodes. In the case of transportation
networks, for example, one could assign a different importance to
each node proportionally to the population served by the node.
However, approaches based on current definition of diameter and
efficiency do not permit to make such distinction. Third, current
approaches place a single link between two nodes. However, often
networks have a complex system of in series and in parallel sub-
links between two end-nodes. Using a single link between two
nodes does not allow the proper evaluation of the loss of capacity
of the connection in case of a disturbance. This is because a single
link can typically be either functioning or not. However, in reality a
link could experience only a partial loss of capacity due to failure of
some, but not all, of the sub-links connecting the two end nodes. As
a result, the characterization of the network reliability is incom-
plete and potentially misleading.

This paper addresses the above limitations by making the fol-
lowing contributions. First, beside diameter and efficiency, two
novel measures of connectivity, namely eccentricity and hetero-
geneity, are introduced to take into account the variability in the
connection measures between two generic nodes in the network.
Second, nodal weights are introduced in addition to link weights
to take into account the importance of the components of the net-
work and to provide, indirectly, a simplified measure of flow. Third,
unweighted auxiliary nodes capture the complexity of the connec-
tions between end-nodes. They help to represent the complex net-
work topology between two nodes, allowing a proper evaluation of
the loss of capacity of the connection between the end-nodes. The
introduction of the proposed nodal weights and auxiliary nodes
implies a modification of the adopted measures of network con-
nectivity. Overall, we propose a probabilistic formulation to assess
the network reliability of networks by investigating the proposed
connectivity measures that include nodal weights and auxiliary
nodes. The formulation is probabilistic because it allows for the
probabilistic characterization of the reliability of a network, based
on the statistics of the adopted four connectivity measures in the
post-event scenario. The formulation is illustrated by an example
transportation network that connects 8 cities by highways with
12 bridges subject to seismic excitations. This application clearly
shows the value of the proposed formulation for a quantitative
evaluation of the reliability of the considered network.

The paper is organized in the following sections: Section 2
reviews the current formulations; Section 3 presents the novel
contributions including adopted measures of connectivity, nodal
weights and auxiliary nodes; Section 4 describes the probabilistic
algorithms to simulate the effects of a disturbance on the network;
and, finally, Section 5 illustrates the proposed formulation using an
example transportation network.

2. Current formulations of the network characteristics

2.1. Network representation: adjacency, weight and network table

As presented in Watts and Strogatz [38], a general undirected
network can be defined by n nodes or vertexes andm links or edges
connecting the nodes. The network is then represented by an n� n

adjacency table A ¼ ½aij�, where aij ði–jÞ is either 1, if there is a link
between nodes i and j, or 0 otherwise, and aii ¼ 0. It is common,
especially for physical networks, to weight the adjacency table
with an n� n link weight table WL ¼ ½wL;ij�, where the weights
wL;ij ði; j ¼ 1; . . . ;nÞ are used to capture a characteristic of interest
of the link between nodes i and j. For example, in the case of a
transportation network, wL;ij could represent the distance or the
travel time between the two end-nodes i and j. In this case, the
link-weighted network is represented by an n� n network table
N ¼ ½nij� with element nij ¼ aij �wL;ij ði; j ¼ 1; . . . ;nÞ.

2.2. Measures of connectivity: diameter and efficiency of the network

Networks can be distinguished based on measures of connectiv-
ity. Two end-nodes are connected if there is at least one path
between them with a finite number of links. There are two typical
measures of network connectivity in the literature: the diameter
(or characteristic path length) d and the efficiency g. Both can be
defined to describe the connectivity of a specific node to the other
nodes in the network (nodal diameter and nodal efficiency) or to
describe the overall network connectivity as an average of all of
the nodal connectivity (global diameter and global efficiency).

The nodal diameter di is the average length of the shortest path
between node i and the rest of the network:

di ¼ 1
ðn� 1Þ

Xn
j¼1
j–i

dij; ð1Þ

where dij ði; j ¼ 1; . . . ;nÞ is the length of the shortest path between
nodes i and j, i.e., the smallest sum of the link weights (e.g., dis-
tances) considering all the possible paths in the network between
node i and node j, [39]. The quantity in Eq. (1) can then be standard-
ized by dividing it by the optimal nodal diameter di;opt that corre-
sponds to an ideal network with a direct (single) link between
each pair of nodes (complete graph): �di ¼ di=di;opt . As a note about
the nomenclature used in this paper, we use the word ‘‘standard-
ized” to indicate that the considered metric is divided by a reference
value. To avoid a possible confusion, we do not use the word ‘‘nor-
malized” here and keep this word to indicate a transformation that
makes a variable to follow a Normal distribution. In the case of an
unweighted graph, di;opt ¼ 1. The standardized nodal diameter �di
ranges from 1 to þ1. It is equal to 1 when di ¼ di;opt , and higher val-
ues of �di indicate some loss of connectivity with respect to the opti-
mal case. In the case node i is disconnected from node j, it is not
possible to find a path of finite length between the two nodes and
dij ¼ 1. As a result, di and �di are equal to 1. However, we do not
have information on the extension of loss of connectivity, in other
words, whether just one node or a larger number of nodes lost their
connection with node i.

To address this issue, Latora and Marchiori [39], introduced the
efficiency g. The nodal efficiency gi is defined as the average of the
inverse of the shortest path between node i and the other nodes of
the network:

gi ¼
1

ðn� 1Þ
Xn
j¼1
j–i

1
dij

¼ 1
ðn� 1Þ

Xn
j¼1
j–i

hij; ð2Þ

where hij ¼ 1=dij for i–j and hij ¼ 0 otherwise. Unlike di, gi provides
information also on the extension of the loss of connectivity. When
node i is disconnected from node j, dij ¼ 1 and, as a result, hij ¼ 0. A
larger number of hij ¼ 0 in the summation in Eq. (2) reflects a larger
number of disconnections, resulting in a lower value of gi. The value
of gi is between 0 (no links between node i and the other nodes) and
1 (in the case of a complete graph.) As for the nodal diameter, gi can
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