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a b s t r a c t

Optimal decision-making for systems in the presence of uncertainty poses a significant challenge in many
fields of research and for many applications. While Markov Decision Process (MDP) is a capable proba-
bilistic framework to incorporate uncertainties in system behavior, measurement randomness arising
from imperfect inspections is disregarded in those models. Additionally, the decision-making problem
for multi-state multi-element systems has exponential time complexity with respect to the number of
system elements. This paper introduces a new decision-making framework for such systems that incor-
porates element-level decision variables and their consequences at the system-level of an asset. The
framework employs a Partially Observable MDP (POMDP) with a randomized point-based value iteration
solution strategy to capture system forecasting uncertainty as well as randomness in inspection measure-
ments. The capability of the framework to handle large-scale optimization problems for element-level
decision-making in multi-element systems is considerably enhanced via a counting process state reduc-
tion technique that is introduced and integrated into the POMDP model. The application of the proposed
framework is demonstrated for long-run decision-making regarding maintenance, rehabilitation, and
repair of a bridge system with realistic settings. Based on numerical results, it is concluded that the pro-
posed framework composed of POMDP and the counting process techniques provides an efficient yet
accurate approach for the optimal management of multi-state multi-element systems.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Optimal decision-making for management of systems in the
presence of uncertainty poses a significant challenge in many fields
of research and for many applications. Infrastructure systems man-
agement, robotics science, and image processing are among such
fields. The Markov Decision Process (MDP) is a well-developed
probabilistic framework in which periodical observations can be
incorporated for optimal decision-making. According to Markovian
characteristics, the condition state of an element at each time is
dependent only upon its condition state at the most previous time.
Implementing this feature within dynamic programming and
cost-optimization procedures, optimal decisions are identified for
perfectly observed condition states. For instance in transporta-
tion systems management, many U.S. state departments of
transportation (DOTs) take advantage of an MDP-based platform
called AASHTOWare [5]) (formerly known as PONTIS [4]) for

management of bridges. This framework accounts only for the
forecasting uncertainty of the time-dependent behavior of the sys-
tem. However in reality, observations of the condition state of the
system made through inspection instruments are accompanied
with systematic and random errors. Therefore to achieve reliable
solutions, measurement uncertainty has to be dealt with in the
decision-making framework. In the context of civil engineering,
Madanat and Ben-Akiva [28] incorporated this uncertainty source
into an MDP framework and called the approach Latent Markov
Decision Process (LMDP). However more commonly, the frame-
work is referred to as Partially Observable Markov Decision Process
(POMDP) [30,12]. POMDP establishes a more realistic decision-
making framework through which inspection observations provide
an estimate of the current condition state as opposed to the error-
free evaluations assumed in the case of MDPs.

Based on the history of observations and the actions taken,
Bayes rule is utilized for updating the probability distribution of
the true condition states (belief state). For decision-making in this
case, rather than two consecutive time steps (which is the case in
MDP frameworks), the optimal decisions for each time epoch
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depends on the entire history of the selected decision variables and
observations. This procedure results in a more realistic model at
the expense of an exponential increase in the complexity and com-
putational cost of the framework compared to the conventional
(fully observed) MDPs. To overcome the runtime hurdle of this
approach, a number of approximate discretization techniques such
as hierarchical clustering were employed [29]. As an alternative
approach, some algorithms provide the exact solution, while
reducing the runtime considerably by determining the belief state
domains with similar optimal strategies [30,12]. These domains
can be defined by solving sets of linear programming problems
[13,21] with polynomial time-complexities. Using this procedure,
POMDP provides a robust framework for decision-making under
noisy observations.

POMDP has gained many applications in diverse fields, such as
pavement and bridge management [18], system maintenance
[1,41,15], robotics science [31,35,36], assistive technologies
[10,23], and computer vision [31]. However, its application
becomes prohibitive for systems where the size of the state and/
or action space becomes large. For example in the bridge manage-
ment problem by Ellis et al. [18], the bridge system was considered
as a single element with five general condition states. This issue
was addressed by Spaan and Vlassis [40] through development of
a steady-state randomized point-based value iteration solver for
POMDPs called Perseus. In this approach, instead of investigating
the entire belief space, a set of likely belief state points is deter-
mined through random walks. As a fast POMDP solver, Perseus
has been used for small scale decision-making problems e.g. bridge
management [32,33], robotics [34,11] and image processing
[14,25]. For instance, Papakonstantinou and Shinozuka [32]
applied Perseus framework for an infinite-horizon decision-
making of a single corroding wharf deck with 332 states (with dif-
ferent deterioration rates). However, as they also reported the
major limitation of this framework is still the required computa-
tional demand and memory space for large state-space problems.

Themain shortcoming of MDP-based frameworks, while provid-
ing a strong tool for optimal decision-making, is the poor adaptation
to a portfolio of joint elements [27]. An example follows to further
elaborate this point. Let’s consider a bridge system consisting of
multiple components among which deck, superstructure and sub-
structure components contribute to the overall safety of the bridge.
Optimal planning for such a system requires the consideration of
these components and the combinations of their states. As a result,
the state and action size of the decision-making problem increases
exponentially as the number of components increases. For a bridge
system composed of 10 elements each having 10 condition states
and 5 possible maintenance, rehabilitation and repair (MR&R)
actions, the total number of states and action combinations in the
decision-making framework would be 1010 and 510, respectively.
The difficulty of handling this problemand the extremely significant
required computational cost are prohibitive for any decision-
making platform. Due to the extremely large number of states and
actions in such problems, many available models have applied
MDP for optimal decision-making through state generalization
and condensation (e.g.; [18,17,27]). In these studies, the condition
state of the system or a subsystem composed of a group of elements
typically represents an average condition of their constituent parts.
Likewise, the actions corresponding to these states are general for
all elements within the subsystem or the system itself [27].
Although such techniques reduce the size of the problem and there-
fore the computational cost, they may introduce large approxima-
tions for the assignment of element-level optimal strategies.

This paper introduces a new comprehensive decision-making
framework for the management of systems comprised of multiple
elements, in a way that optimal strategies are provided at the

element-level and uncertainty sources both in the system perfor-
mance and inspected measurements are incorporated. The pro-
posed method integrates a randomized point-based value
iteration approach to solve Partially Observable MDP problems
with a new counting process state reduction technique that
enables tackling large scale decision-making problems. The con-
cept behind the counting process is that elements of a system
can be grouped based on significant attributes that influence the
outcomes of the analysis; for management of bridges, these attri-
butes can be structural features and deterioration performance of
the elements, and consequences of different damage states. Using
this methodology, the optimization problem in POMDP deals with
the quantity of elements in each of the condition states for each
element type rather than dealing with all combinations of the con-
dition states of elements. This enhances the ability to handle larger
optimization problems for multi-state multi-element systems.
However it should be mentioned that the proposed integration of
the counting process technique with POMDP introduces a number
of approximations and loss of accuracy to the original problem.
These include, for example, loss of spatial information about ele-
ments and correlations in elements’ rate of deterioration, and
assignment of the same action to elements in the same condition
state.

The proposed framework is applied to a case study bridge sys-
tem with realistic settings composed of four girders and a concrete
deck. The elements of the bridge are under time-dependent deteri-
oration due to the combined effects of aging, demand loads, and
other environmental stressors. Furthermore, measurement ran-
domness associated with commonly used inspection techniques
are considered to account for the uncertainties in the estimation
of the condition states of bridge elements.

The rest of this paper is organized as follows: In Section 2, the
applied POMDP-based framework is presented. Section 3 explains
the counting process technique and discusses its effectiveness in
reducing the number of states. Furthermore, expressions are
derived for POMDP matrices based on the new definition of the
condition states. In Section 4, the application of the framework is
demonstrated for the example bridge system, and the numerical
results are provided and discussed next in Section 5. Finally, the
conclusion section summarizes the features of this framework
and its application for multi-state multi-element systems.

2. POMDP framework

In a discrete MDP, the time variant behavior of a system ele-
ment is predicted through Markov chains. A Markov chain consists
of a transition probability matrix that defines the conditional prob-
ability of the true condition state of the utility at time t given the
state at time t � 1

PðXtjXt�1;Xt�2; . . . ;X0Þ ¼ PðXtjXt�1Þ ð1Þ

where P(.) denotes the probability and Xi stands for the condition
state at time i. For each of the possible condition states at time
t � 1, a probability mass function (PMF) is provided in the Markov
chain to describe the likelihood of the condition states for the next
time period. A graph-based representation of a 5-state Markov chain
is depicted in Fig. 1 where PMF values are shown on the graph edges.
The goal of the MDP is to choose among a set of actions such that a
predefined objective function is optimized. Each considered action
requires a transition probability matrix describing the probabilistic
impact of the action on the condition states, as well as the reward
associated with that action. Defining the objective function as the
expected accumulated reward at each of the decision-making times,
the MDP framework can be mathematically described as
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