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a b s t r a c t

Human induced vibration is a common problem in the design of planking levels as both flooring or deck-
ing. The source of the vibration is the so-called ‘‘human induced loading (HIL)”. Models are available for a
single exciting person and for a dense aggregation of persons. Small groups of persons should also be con-
sidered in view of serviceability limit state design. This paper introduces a model for the time variant
stochastic fields of forces induced by the walking of a small group of persons. A numerical example is pre-
sented dealing with the evaluation of vertical and transversal accelerations at nodes of a finite element
model of an existing wood footbridge. The example considers different idealizations of the human
induced excitation and the results of these models are compared to actual records.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Human induced vibrations are generally restricted to those
vibrations which are induced by the presence of human bodies
on a structural component as the floor of a building [1,2] or the
deck of a bridge [3,4]. In the latter case one is generally speaking
of pedestrian bridges, since bridges targeted to the crossing of traf-
fic and, even better, rail-services are less sensitive to the human
action.

Footbridge serviceability criteria demand for a way to model
the loading induced by the human crossing. This is true in the
design stage, when the designer has to foresee the human induced
vibration, but also in service to interpret the structural monitoring
collection of data, in view of possible counteractions when
required. Several multi-body dynamics models were proposed,
but their use would simulate the behavior of a driven body, rather
than that of a human being who mainly responds to social and psy-
chological stimuli.

The movements of a standing human body are generally
grouped into three main classes: walking, running (including jog-
ging) and aerobic. Since this manuscript is regarding bridges, the
focus is on the first two aspects. Their study is a basic research area
in robotics and/or bio-mechanics. Recently a deep historical review
since the first Aristotle’s steps was published [5], and the author
introduces a 17th century book (by Borelli) as the first book never

published in bio-mechanics. The same historical review concludes
with 2D and 3D models of the human body, conceived as a multi-
body of 16 degrees of freedom. The use of these models for loading
structural systems [6] would be fascinating, but some ingredients,
coming from social sciences and psychology, would make it non-
realistic enough. Indeed human beings tend to adapt their behavior
to that of the surrounding people and/or, when on a vibrating sys-
tems, tends to follow the felt motion. There is an attempt to incor-
porate such remarks in existing recommendations [7–11], which
are focused on the limit cases of a single pedestrian and a dense
clustering of persons. Nevertheless, it is worth noticing that from
a static point of view the full occupation of the footbridge is the
most dangerous scenario, with the human induced vibration
source being restricted to the alternate step movements. Added
masses are significant for the load intensity, but they also shift
the structure own frequencies. By contrast a group of pedestrians,
say 4 or 6, with their moving masses, could easily induce resonance
with some of the footbridge structure frequencies. This is why this
manuscript deals with the modelling of the action induced by a
small group of human beings and does it in a stochastic framework
involving two spatial variables and the time variable: in other
words, the consequence of human unpredictability is regarded as
stochasticity.

2. Modelling a time variant stochastic field

Attention is focused on those models of random fields which
allow one to simulate [12–14] realizations accurate enough as
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structural excitation. Assume first that the time variability can be
neglected. Then one could rely on 2D stationary random field mod-
els, in the plane ðx; yÞ, usually assigned by a power spectral density
matrix with zero mean and Gaussian features. The Gaussianity
requirement was recently removed [15], so that any wished prob-
ability distribution can be assigned.

Adding the time in a stationary way, one should simply move
from a 2D to a 3D spectral specification. However, the main con-
cern, apart the possible non-stationarity in time (which could be
included by a suitable shape function), is the non-homogeneity
in space. This led wind engineers, wishing to simulate time histo-
ries of wind velocity as random field realizations, to conceive a
hybrid model accounting the time in a spectral way, while preserv-
ing the space coordinates [16]. The reader is referred to the litera-
ture for the details, and mainly to a paper by Ubertini and Giuliano
[17], which also presents an operational approach to the simula-
tion. Refs. [16,17] inspired the model the authors illustrate in the
following of this section. Given a grid on plane surface, the wind
engineer needs a time sequence of discrete distributions of wind
velocity vectors in each node, being the grid at rest. This paper pur-
sues a time sequence of discrete distributions of force vectors W in
each node of a translating grid. The force vectors are actually the
local resultant of forces per unit area w, which are defined in any
point of the continuous surface.

Such a simulation requires that the continuous three-variate
function wðx; y; tÞ be evaluated at the discretization nodes of the
3D domain: wijhðxi; yj; thÞ. Under the stationarity assumption, the
(constant) mean value of the random field of one of the compo-
nents of w is drawn in Fig. 1. The shaded region in the bottom
plane is drawn in order to emphasize the grid translation at two
subsequent time instants. The values at the grid points, represent-
ing the mean values, can also be regarded as those associated with
a statically (i.e., not in the statistical sense) uniform distribution of
the load per unit area. It is worth noticing that the vectorsW andw
vary in the plane ðx; yÞ as well as in time. However, their compo-
nents are out-of-plane, i.e., vertical, and transversal, i.e., along y
axis. This suggested to denote the components by 1 and 2, vertical
and transversal, respectively, in order to avoid conflicts.

When a realization is simulated, the ordinates associated to the
grid nodes are generated. As Fig. 1 clarifies, realizations at two suc-
cessive time discretization steps do not apply to the same deck
rectangle, but the rectangle moves at the velocity v, along the lon-
gitudinal x direction, by which the pedestrians move. For the

reader familiar with continuum mechanics one could say that the
grid corresponds to a Lagrangian representation of the load, which
moves along the bridge with a given velocity time history.

Due to the narrow width b, in the y direction, of a footbridge of
the type discussed below, it can be assumed that the pedestrians
proceed by couples. Assuming for sake of clarity, but without loss
of generality, that a group of 6 persons is studied, three couples
proceed together remaining inside a longitudinal segment of
length d: they act over the deck rectangle of area bd. Each couple
acts over the deck rectangle bd/5, and between two successive cou-
ples a distance of bd/5 is set. One introduces 4 nodes along each
transversal couple position. The grid of Fig. 1 results to be made
of 24 nodes (Ni = 6 by Nj = 4) to cover the rectangle where 3 couples
of two persons move along the bridge. The discretization steps are
b/3 and d/5, respectively. In a deterministic context, the single
pedestrian is given the nominal mass of 80 kg. For n = 6 persons,
the total vertical force is 4800 N which can be spread on the area
resulting in 4800/bd N/m2 or, equivalently, in a concentrated load
of 200 N per node.

Regarding the distributed force as a random variable, the single
pedestrian variance can be derived after the introduction of a likely
range: for instance, from 35 to 125 kg. This range of 90 kg is
regarded as a 6 standard deviation range, i.e., the standard devia-
tion is 15 kg and the variance 225 kg2. The coefficient of variation
(c.o.v.) is 15/80 = 0.1875. For n pedestrians (and statistically inde-
pendent pedestrian masses) the average global mass becomes
80n kg; the variance is 225 n kg2; the standard deviation is 15
(n)1/2 and the coefficient of variation 0.1875/(n)1/2.

The random field results from the irregular distribution of the
associated global weight divided by the area of the rectangle, but
it can also be modelled as the random vector of the concentrated
forces at the grid nodes. Let Wðxi; yj; tÞ be its symbol, with
W1ðxi; yj; tÞ and W2ðxi; yj; tÞ its vertical and transversal component,
respectively. The indexes i and j span over the range (0, Ni) and (0,
Nj), respectively: writing Wk (x, y, t), k = 1,2, one means the vector
of the k-th component of the nodal force in all the grid nodes. The
vertical components are characterized by the central moments
specified above, while the horizontal (transversal) component
has zero mean. There is an aspect here which is demanded to fur-
ther investigation: the standard deviation mentioned above come
from the different likely size of the persons in the walking group,
but the standard deviations of the components of W also come
from the different position within the grid of the single person feet.

Fig. 1. Within the specified grid rectangle, the spatial random field ‘‘distributed load” has to be evaluated at any time t: the shown ordinates provide the mean values around
which the vertical component of the random field fluctuates. At two successive times, the grid rectangle moves one step.
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