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a b s t r a c t

Uncertainties in the solution model and its input parameters make it difficult to ascertain the perfor-
mance of an engineering system. While Monte Carlo simulation methods may be used to model the
uncertain performance of such system, computational efficiency is a great challenge. To this end, subdo-
main sampling method (SSM), an efficient algorithm for estimating the failure probability of a system, is
proposed in this study. The SSM involves a few steps. First, the possible domain of uncertain input vari-
ables of the system of concern is partitioned into a set of subdomains. Then, samples of uncertain vari-
ables are generated in each and every domain separately. Among these generated samples, those that
lead to failure of the system are identified through a deterministic analysis. Finally, the failure probability
is estimated using the total probability theorem. This SSM approach is referred to as the coarse subdo-
main sampling method, which is a fast algorithm with a generally acceptable accuracy. To reduce the
variation of the failure probability estimate, a refined SSM is further developed by combining the coarse
SSM with the importance sampling method. The accuracy and the efficiency of the proposed subdomain
sampling methods, the coarse and refined SSMs, are demonstrated with two supported excavation
problems.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainties in the solution models and input parameters are
often unavoidable in the analysis of a civil engineering system. In
an uncertain environment, it is difficult to evaluate the perfor-
mance of an engineering system with certainty. To cope with the
uncertainty in the evaluated performance, a conservative factor
of safety (FS) is often adopted in the design. Though the FS-based
approach is simple, the ‘‘true” safety level of the resulting design
is generally not known. While a design could be made conservative
by adopting a sufficiently large FS, under-design (unsafe design)
may still happen in the face of model and parameters uncertain-
ties. To account for the uncertainties explicitly in the analysis
and design, use of reliability-based design (RBD) method has long
been advocated [20,6,2]. Within the context of RBD, the perfor-
mance of the engineering system (called ‘‘system performance”
herein) is usually studied with probabilistic methods that could
explicitly account for the uncertainties in the solution model and

input parameters. The outcome of the probabilistic analysis is a
failure probability (Pf), expressed as:

Pf ¼ Pr½gðxÞ 6 0� ¼
Z
gðxÞ60

f ðxÞdx ð1Þ

where x = [x1, x2, . . ., xnx ]
T is a vector of uncertain variables xi (i = 1,

2, � � �, nx), in which the subscript nx is the dimension of uncertain
variables; g(x) is the performance function or limit state function,
which is formulated such that g(x) � 0 denotes the failure of the
engineering system; and, f(x) is the joint probability density func-
tion (PDF) of uncertain variables x.

Difficulty in deriving the closed-form solution of the multifold
probability integral in Eq. (1) has led to various approximation
methods, such as first order second moment method (FOSM)
(e.g., [26], first order reliability method (FORM) (e.g., [30,27], and
point estimate-based moment method (PEM) (e.g., [38,39]. The
outcome of these approximation methods is a reliability index
(b), which may be related to the failure probability (Pf) as follows:

Pf ¼ Uð�bÞ ð2Þ
where U(�) is the cumulative distribution function (CDF) of the
standard normal variable.
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Though these approximation methods have been widely used in
engineering practices, some concerns remain: (1) the accuracy of
the approximation methods might become an issue if the perfor-
mance function is highly nonlinear and/or high-dimensional; (2)
the evaluation of the partial derivative of the performance function
might be an obstacle when using FOSM or FORM, especially in sit-
uations where the system performance could only be analyzed
using numerical methods; and (3) the distribution of the perfor-
mance function is approximated with its moments of finite order,
both the evaluation of the moments and the approximation of
the distribution might introduce errors. To avoid the drawbacks
of these approximation methods, sampling-based methods such
as Monte Carlo simulation (MCS) (e.g., [34,7] are usually employed.
Within the context of MCS, samples of uncertain variables are
drawn from the joint PDF of uncertain variables. Once the samples
are generated, the system performance for each of these samples
can be evaluated using a deterministic model, and then the failure
probability is readily estimated.

Pf ¼ 1
N

Xi¼N

i¼1

IðxiÞ ð3Þ

where N is the number of samples of uncertain variables; I(xi) is an
indicator function of the ith sample of uncertain variables xi, which
is defined as follows: if g(xi) � 0 then I(xi) = 1.0, otherwise I(xi) = 0.

MCS-based approach generally yields an unbiased estimate of
the failure probability; however, the required number of samples
of uncertain variables, and thusly the number of deterministic
evaluations of the system performance, may be too large to be
computationally efficient, especially for problems of low failure
probabilities. The issue of low computational efficiency becomes
more profound when the system performance can only be evalu-
ated using numerical methods. In such circumstances, various
sophisticated sampling methods, such as importance sampling
(e.g., [1,3,19] and subset simulation (e.g., [4,8,22], have been pro-
posed to improve the computational efficiency. Nevertheless, the
concern regarding the computational inefficiency of the
sampling-based methods has not been settled fundamentally. For
example, the construction of the importance sampling density
function, which is an essential step in the importance sampling
method, is often a challenging task as it requires the identification
of the failure domain. In the case of the subset simulation, the
required number of samples is largely dependent upon the magni-
tude of the failure probability. That is to say, effort to improve the
computational efficiency through a new sampling method is
deemed a worthwhile pursuit.

In this study, subdomain sampling methods (SSMs) are pro-
posed for estimating the failure probability. Within the framework
of the proposed SSMs, the possible domain of uncertain variables is
partitioned into a set of subdomains with the aid of a distance
index that is formulated in the standard normal space. Then, sam-
ples of uncertain variables are generated in each and every subdo-
main separately using a sampling algorithm suggested by Gong
et al. [15]. Among these generated samples, deterministic analysis
of the system performance can readily be conducted; and, the sam-
ples that lead to the failure of the system are identified. Next, the
failure probability of the engineering system is estimated using
the total probability theorem. This approach is referred to herein
as the coarse SSM. Note that the failure samples identified with
the coarse SSM can be used for constructing the importance sam-
pling density function, which is a required element in the impor-
tance sampling method. Thus, a refined SSM, which takes the
advantages of both the coarse SSM and the importance sampling
method, is further developed for the analysis of critical systems.

This paper is organized as follows. First, the coarse SSM is intro-
duced. Second, the refined SSM is presented. Third, two supported

excavation problems are studied and used as demonstrative exam-
ples to investigate the accuracy and the efficiency of the proposed
SSMs. A series of comparisons are made between the proposed
SSMs and the existing methods such as subset simulation, FORM,
and crude MCS. Finally, the conclusions are drawn on the basis of
the results presented.

2. Coarse subdomain sampling method

In reference to Eq. (3), the samples that are located in the failure
domain contribute the most to the failure probability estimate;
however, the density of the samples, generated with the crude
MCS, is proportional to the joint PDF and most samples are located
in the region of high joint density values. As such, the crude MCS
may not be computationally efficient. To overcome the limitations
of the crude MCS, subdomain sampling methods (SSMs) are pro-
posed in this study. Within the framework of SSMs, the possible
domain of uncertain variables is partitioned into a set of subdo-
mains; then, samples of uncertain variables are generated in each
and every subdomain separately. These generated samples are
‘‘uniformly” distributed in the domain of uncertain variables and
a larger number of samples are located in the failure domain; thus,
the failure probability could be estimated with higher accuracy.
Here, a distance index (d), which is employed to partition the
domain of uncertain variables, is formulated based upon the
Hasofer-Lind reliability index [21,27]:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½n�T½R��1½n�

q
ð4Þ

where R is the correlation matrix among the equivalent standard
normal variables n = [n1, n2, . . ., nnx ]

T, which may be estimated from
the correlation matrix among the original uncertain variables x =
[x1, x2, . . ., xnx ]

T using the transformation suggested by Der Kiure-
ghian and Liu [11]; and, the component ni in n is related to the
uncertain variable xi in x as follows.

ni ¼ U�1½FðxiÞ� ð5Þ
where F(xi) is the CDF of the uncertain variable xi (i = 1, 2, � � �, nx). It
is worth noting that d2 is distributed as chi-square distribution with
nx degrees of freedom [15].

With the distance index formulated in Eq. (4), a possible domain
of uncertain variables, denoted as [0, dmax), is readily located.

v2
nx ðd

2
max Þ ¼ e ð6Þ

where v2
nx ð�Þ is the chi-square CDF with nx degrees of freedom, and e

is a probability that is relatively low and negligible. As can be seen
from Eq. (6), the probability of the samples being located in and out-
side this possible domain, [0, dmax), are (1 � e) and e, respectively.

2.1. Subdomain partition

In reference to Gong et al. [15], the likelihoods of the samples of
uncertain variables being located in the subdomains, denoted as
(pd1, pd2, pd3, . . .), should be taken as a decreasing sequence, in
the subdomain partition for the purpose of being computationally
efficient.

pdi ¼ Pr di�1 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½n�T½R��1½n�

q
< di

� �
¼ Pr d2

i�1 6 d2
< d2

i

h i
¼ v2

nx d2
i

� �
� v2

nx d2
i�1

� �
ð7Þ

where pdi is the likelihood of the uncertain variables being located
in the ith subdomain [di-1, di). Similar to those in Gong et al. [15],
pd1 = 1/2, pd2 = 1/22, pd3 = 1/23, . . . are taken in this study.
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