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a b s t r a c t

The purpose of this study is to investigate whether the effective Young’s modulus (Eeff) for a spatial vari-
able soil mass can be strongly correlated to any spatial average. The spatially variable Young’s modulus of
the soil mass is modeled as a stationary lognormal random field, and the Eeff of the soil mass is simulated
by random field finite element analysis. Spatial averages are calculated from the input random field. If a
strong correlation exists, it is possible to replace a random field analysis by a simpler random variable
analysis. Two classes of problems are considered: a soil cube subjected to displacement-controlled com-
pression and a footing problem. For the soil cube problem, Eeff is found to be strongly correlated to a suit-
able spatial average. However, for the footing problem, only the statistics (mean and standard deviation)
of Eeff can be well approximated by a suitable spatial average, but the correlation is not strong. It is pos-
sible that the two classes of problems behave differently because the finite elements in the soil cube are
mobilized uniformly, whereas those in the footing problem are mobilized non-uniformly. This leads to a
weighted spatial average model that applies a different weight on the log modulus of each finite element
over the domain being averaged.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The spatial variability of soil parameters has profound impact to
the behavior of a geotechnical system, and a stationary random
field model has been adopted to model such spatial variability in
the literature. A stationary random field is typically characterized
by its mean (l), coefficient of variation (COV = standard devia-
tion/mean), and scale of fluctuation (SOF). The COV quantifies the
magnitude of the oscillation around the mean, whereas the SOF
measures the distance within which the spatial variation is signif-
icantly correlated [19]. The impact of the spatial variability in the
soil Young’s modulus (E) on foundation settlements has been
widely studied [16,14,6,7,11,8,13,17,1,2,3]. For foundations on
soils with isotropic SOFs, an important observation made in Fenton
and Griffiths [6,7] is that the effective Young’s modulus (Eeff) has
statistics (mean and COV) similar to the statistics of the geometric
average (Eg) over a prescribed domain under the footing:

lnðEgÞ ¼ 1
D

R
D ln½Eðx;y; zÞ� � dx � dy � dz ð1Þ

where E(x, y, z) is the E value at location (x, y, z); D is the averaging
domain. Here, the term ‘‘effective Young’s modulus” refers to the
Young’s modulus actually ‘‘felt” by the foundation. To be more
specific, the settlement of a rigid shallow foundation on a homoge-
neous soil mass with Eeff will be identical to the settlement on the
spatially variable soil mass. The process of reducing spatially vari-
able Young’s modulus into Eeff is also called ‘‘homogenization” in
the literature [10,9,15]. The observation Eeff � Eg holds for two-
dimensional (2D) scenarios [6] and also for 3D scenarios [7]. For
foundations on layered soils, Fenton and Griffiths [7] argued that
Eeff has statistics similar to the statistics of the harmonic average
(Eh) for horizontal layers:

1
Eh

¼ 1
D

R
D

1
Eðx;y;zÞ � dx � dy � dz ð2Þ

and similar to the statistics of the arithmetic average (Ea) for verti-
cal layers:

Ea ¼ 1
D

R
D Eðx; y; zÞ � dx � dy � dz ð3Þ

It is important to emphasize that Eeff is determined from the defor-
mation response of a random finite element analysis (i.e., it is an
output of a boundary value problem such as a shallow foundation
applying pressure on top of a semi-infinite soil domain). In contrast,
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these conventional spatial averages (Ea, Eg, and Eh) are calculated
from the input random field describing the spatial distribution of
the Young’s modulus over the semi-infinite soil domain (i.e., they
are inputs unrelated to the boundary value problem).

The similarities reported in Fenton and Griffiths [6,7] are in the
statistics of Eeff. It is not clear whether Eeff is strongly correlated to
the spatial average. There is no theoretical reason for this correla-
tion to exist between an output (Eeff) and an input (spatial average)
quantity. Note that the similarity in the statistics does not imply
strong correlation, e.g., two random variables can have same statis-
tics and yet be completely uncorrelated. A more general way of
presenting this issue is to ask if an input random variable can be
defined based on a conventional spatial average such as Eg, Eh,
and Ea such that it is identically distributed and fully correlated
(correlation coefficient = 1) to the output random variable Eeff?
Given that Eeff is the output of a boundary value problem, a related
issue is whether this conventional spatial average can be defined
so that it is independent of the boundary value problem. The prac-
tical importance of these issues are quite obvious. If the answer is
yes for the first issue, it will be possible to simplify a random finite
element analysis involving a random field to a random variable
problem which is less costly and perhaps more importantly, make
probabilistic design more accessible to engineers. If the answer is
yes for the second issue, a non-problem specific solution exists.

For a 2D square specimen subjected to 1D displacement-
controlled compression (similar to oedometer test), Ching et al.
[4] found a stronger conclusion: not only the statistics of Eeff can
be well approximated by a suitable conventional spatial average
but Eeff can also be strongly correlated to this spatial average (cor-
relation coefficient close to 1). That is, for their 2D soil specimen
undergoing 1D compression, the answer is yes. This is a rather
remarkable outcome given an output (Eeff) can be ‘‘predicted” by
an input (spatial average)! It is natural to ask the following ques-
tion: is it true that the Eeff for the footing problem is strongly cor-
related to some suitable conventional spatial average as well? Note
that the footing problem is more complicated than the 2D soil
specimen. The simulation results presented in this paper show that
this is not true. For the footing problem, only the statistics of Eeff
can be well approximated by a suitable conventional spatial aver-
age, but the Eeff is not strongly correlated to this spatial average.
That is, for the footing problem, the answer is no.

With the above past studies in mind, this paper seeks to clarify
three new aspects, with a focus on understanding the effectiveness
of applying conventional spatial averages to estimate the numeri-
cal value of Eeff in a 3D setting:

1. Demonstrate that the Eeff for a square specimen subjected to
displacement-controlled compression is strongly correlated to
a suitable spatial average. In particular, this demonstration will
be conducted on a 3D soil cube in an attempt to generalize the
2D results presented by Ching et al. [4]. Moreover, it will be
shown that this strong correlation is insensitive to whether
stress is uniform within the soil cube as long as a proper spatial
averaging model is chosen.

2. Demonstrate that the Eeff for the 3D footing problem is not
strongly correlated to any conventional spatial average. Only
its statistics can be well approximated.

3. Explore possible explanations for why the two classes of prob-
lems behave so differently. One possible explanation is illus-
trated: whether all finite elements are mobilized uniformly or
not. The finite elements in the soil cube subjected to
displacement-controlled compression are mobilized uniformly,
hence a conventional spatial averaging model works well (in
the sense that Eeff is strongly correlated to the spatial average).
However, the finite elements in the footing problem are mobi-
lized non-uniformly. A spatial averaging model that cannot

accommodate such non-uniform mobilization cannot work
well, even though the spatial average can have statistics similar
to Eeff.

2. 3D soil cube under investigation

2.1. Random field model

Consider a 3D spatially variable soil mass with size
L � L � L = 10 � 10 � 10 (Fig. 1). No unit is specified for the dimen-
sion L because all dimensions will be normalized by SOF. The
Young’s modulus, denoted by E(x, y, z), is modeled as a stationary
lognormal random field with inherent mean = l and inherent
coefficient of variation = COV. No unit will be specified for l
because all statistical properties of the soil mass will be later
normalized by l. To define the correlation structure between two
locations with horizontal distances = (Dx, Dy) and vertical
distance =Dz, the single exponential auto-correlation model is
considered [19,20]:

qðDx;Dy;DzÞ ¼ expð�2jDxj=dx � 2jDyj=dy � 2jDzj=dzÞ ð4Þ

where dx, dy and dz are the SOFs in (x, y, z) directions, respectively,
for the ln[E(x, y, z)] random field. A 3D stationary lognormal ran-
dom field E(x, y, z) can be simulated by taking the exponential of
a 3D stationary normal random field ln[E(x, y, z)] with
mean = k = ln[l/(1 + COV2)0.5] and variance = n2 = ln(1 + COV2). In
this study, the local average for each finite element is taken to be
E = geometric average for E(x, y, z) over the element because there
is an analytical expression for local geometric average, and this local
average can be simulated quite readily using the Fourier series
method [12,5]. Fig. 1a shows a realization of the E random field with
dx = dy = dz = 1. The light region refers to low values of E, whereas
the dark region refers to high values of E. The Poisson’s ratio (m)
is not modeled as a random field but is taken to be a constant
(m = 0.3) because these two scenarios (random field m and constant
m) produce comparable results [6,7,4].

2.2. Finite element model

The 10 � 10 � 10 cubic domain is modeled by the finite element
(FE) mesh shown in Fig. 1. Each FE element has
size = 0.4 � 0.4 � 0.4 and is with eight nodes. In total, there are
25 � 25 � 25 = 15,625 FE elements. Each FE element follows iso-
tropic elasticity with E = its local geometric average and m = 0.3.
The commercial FE package ABAQUS is adopted.

2.3. Simulation of effective Young’s moduli

For each realization of the E random field, three random field
finite element analyses that simulate an overall 1D compression
in the (x, y, z) directions are conducted. Let us consider the x direc-
tion as an example. As shown in Fig. 2, the nodes on Face 1 are con-
strained in a ‘‘tied freedom”manner [15] so that all nodes on Face 1
are subjected to a uniform x-displacement of 0.1. Face 2–6 are con-
strained by rollers (e.g., for Face 3, y-displacement is not allowed).
The predominant strain in the soil cube should be in the
x-direction. The other strain components, ey, ez, exy, exz, and eyz,
may not be zero in each element due to spatial variability, but they
are likely to be minor. The boundary condition described above is
similar to that imposed in an oedometer test. The effective Young
modulus in the x direction, denoted by Ex,eff, can be deduced from
the deformation response of the soil cube. The stress at Face 1 is
not uniform because a uniform displacement boundary is pre-
scribed. The ‘‘overall” rx is equal to the arithmetic average of rx

over Face 1. Because the overall strains are ex = 0.1/10 = 0.01 and
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