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A B S T R A C T

This paper employs the Direct Stiffness Method (DSM) to carry out geometric nonlinear analysis of plane frames
with nonuniform physical-geometric characteristics. At the element level, a flexibility system of equations based
on the principle of virtual forces (PVF) is established to calculate the tangent stiffness matrix and the equivalent
nodal loads. The formulation allows for the easy modeling of shear-deformable frame elements with generic
rigidity variation along their axes. In addition, Green's theorem is considered to express all the necessary section
properties in terms of boundary integrals. This considerably simplifies the modeling of complex cross sections of
arbitrary shapes. A “boundary-element” mesh is then used to model the geometric description of the cross
sections. At the structure level, to determine the nonlinear equilibrium trajectories for the frame, we apply a co-
rotational updated Lagrangian formulation along with an incremental-iterative full Newton-Raphson process.
Large displacements and internal member forces are accurately reconstituted. Frameworks having elements with
geometrically complex cross-sections varying along their axes are analyzed to validate the strategy proposed.

1. Introduction

In engineering practice, engineers must possess computational
analysis tools that have the ability to model frame structures containing
elements with cross sections of arbitrary shapes, and/or variable ri-
gidities. To reduce material consumption, for instance, engineers may
vary the sectional dimensions of steel or reinforced concrete members
along their axes. In concrete structures, the rigidity is essentially vari-
able because of cracking [1]. Thus, designing real frame structures
generally calls for strategies that take into account the nonuniform
physical and geometric characteristics of the elements.

In this paper, to conduct a nonlinear analysis of 2D frame structures
with these complex physical-geometric characteristics, the Direct
Stiffness Method (DSM) is employed. DSM may be regarded as the
starting point from which the Finite Element Method (FEM) evolved. In
fact, it offers the simplest way to implement FEM, taking into account 2-
node elements. In this respect, to quote one of the founders of FEM, Ray
W. Clough, FEM may be viewed as a mere “extension of standard methods
of structural analysis in which the structure is treated as an assemblage of
discrete structural elements” [2].

In standard finite element (FE) formulations for frame struc-
tures [3], interpolation functions for deflections must be known in
advance to allow for computing the stiffness matrices and corre-
sponding equivalent load vectors. If FE formulations are to be

developed then in this way, the fact that it is impossible to obtain exact
interpolation functions in real-life situations – say, shear-deformable
frame elements under generic rigidity variation – makes it also im-
possible to determine their exact stiffness matrices and corresponding
equivalent nodal load vectors [4]. One way out of this conundrum is to
approximate the tapered element via a number of uniform elements for
which the exact displacement functions are known [4,5].

Researchers have proposed more accurate solutions for this class of
problems by tackling the differential equation of equilibrium for beams,
which have variable coefficients. Coming up with closed-form solutions
is possible, however, only in very simple cases, usually for linearly ta-
pered elements and not including shear-deformation effects [4,6].
In [7], the authors employed the concept of transfer functions based on
Bernoulli's beam theory to develop a 3D-beam, 2-node, finite element
that permitted the modeling of continuous cross-section variations
along the element axis. In that procedure, an n-order polynomial is
considered to describe the variation of the sectional properties. In
principle, this strategy may be used to model general cross-sectional
shapes. For its validation, however, the authors in [7] considered only
common ones (rectangular and circular). Furthermore, that element
includes no shear deformation.

In [8], Chebyshev polynomials are used to obtain the stiffness ma-
trices for tapered plane frame elements based on Timoshenko-Euler's
beam theory, in which both shear and axial-force deformations are
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simultaneously considered. The accuracy of this strategy, though, is
dependent on the number of terms taken into account in the Chebyshev
polynomials used to represent the deflection as well as the rigidity-
based parameters involved. Yet this strategy might be inefficient for
generic rigidity variations. Moreover, no criterion is stated for de-
termining a reasonable number of terms in the Chebyshev polynomials.

Rather than look for a solution to the differential equations gov-
erning the equilibrium in beams, Friedman and Kosmatka [9,10], ap-
plied the Castigliano's second theorem to derive a flexibility-based
method that allows for writing the analytical expressions of the stiffness
coefficients in Bernoulli-Euler's and Timoshenko's beams with generic
rigidity variations. Proceeding in such a manner avoids the drawback of
standard FE formulations concerned with the prior knowledge of dis-
placement interpolation functions. Recently, de Araújo and Pereira [11]
proposed a flexibility method based on the principle of virtual forces
(PVF) to obtain closed expressions for the stiffness coefficients and the
consistent equivalent load values for 3D (space) shear-deformable
frames under generic variation of rigidity. In PVF, the internal virtual
work is due to the action of virtual generalized stresses on real gen-
eralized strains. By writing the latter ones in terms of real generalized
stresses (real internal forces), this procedure enables then the easy re-
presentation of the exact stiffness values and consistent equivalent
nodal loads in complex problems.

Of course, getting these exact values requires the exact evaluation of
the available strain energy products over the element length, which will
be essentially dependent on the representation of the internal forces,
and on the rigidity variation along the element. To amplify the mod-
eling resources of the computational technique, this work adopts sui-
table polynomial interpolations to approximate the rigidity values and
internal forces at the element. To evaluate the available integrals, this
work employs standard Gauss–Legendre quadratures. In [11], this
strategy is applied to construct elastic stiffness matrices and equivalent
nodal load vectors for generic 3D (space) frame elements; these include
flexural, axial, shear, and torsional deformation modes. In fact, the
proposed procedure can be applied to accurately calculate all consistent
structural matrices (including mass and damping ones), and consistent
load vectors for any frame element, under the most generic physical-
geometric cases. In the current paper, this technique is extended to
determine the geometric stiffness matrices for generic 2D (plane) shear-
deformable frame elements.

In Timoshenko's beam theory, an important and somewhat con-
troversial issue is the consideration of shearing stress/strain effects.
Regarding this consideration, the literature offers several definitions for
the so-called shear correction factor [12–18]. In general, one aims to
replace the actual shearing stress distribution in a certain direction, on
a cross-section, with an equivalent constant one on an effective shear

area. Thus, depending on the criterion one adopts to find this equiva-
lent constant stress distribution, one may obtain somewhat different
shear correction factors. To determine them with rigor, researchers
have considered 3D elasticity solutions. Results reported in the litera-
ture [15,17,19] have shown these solutions' dependence on Poisson's
ratio and even on the aspect ratio of the cross-section [17].

On the other hand, Freund and Karakoç [20] recently showed, based
on a refined Timoshenko's beam model, that shear correction factors are
indeed purely geometric parameters, depending exclusively on the
cross-sectional shape. Regardless, even if determined as an elastic sec-
tion parameter, the variation of shear correction factors as a function of
Poisson's ratio is not significant at all [19]. In this study, we simply
adopt a shear-correction factor based on solutions from elementary
beam theory. The factor is determined by equaling the shear-strain
energy associated with the actual shearing stresses on a given cross-
section to that of an equivalent constant shearing stress on a corre-
sponding effective shear area. This shear-correction factor corresponds
exactly to the one adopted by the commercial code SAP2000 [21].

It should be noted that to compute all needed section properties as
areas, the first and second moments of area as well as the shear-stress
form factors (the inverses of the shear-correction factors), all of the
domain integrals involved are converted into boundary integrals, and
“boundary-element” meshes are used to numerically calculate them.
Doing so makes especially efficient the computational modules for de-
termining all the element cross-section properties. This paper describes
in detail the algorithm for evaluating shear-stress form factors.

Finally, to verify the proposed procedure's suitability and correct-
ness for calculating stiffness matrices and equivalent load vectors, we
incorporated it into a code for the non-linear analysis of plane frames.
In the non-linear analysis, we employ an updated co-rotational for-
mulation along with a standard full Newton-Raphson incremental-
iterative method. The results obtained for steel structures with complex
cross-sectional geometries are compared with those obtained by other
authors and using the SAP2000 [21].

2. The DSM coefficients for plane frame elements

This paper presents a numerical process for calculating the DSM
stiffness matrices (including the geometric one) and the equivalent
nodal load vectors for plane frame elements with cross sections of any
geometric shape, and generically varying along their centroidal axis.
For this class of structures (plane frames), the structural finite element
is that shown in Fig. 1, with 6 degrees of freedom. The stiffness coef-
ficients kij correspond to the element actions for unit prescribed dis-
placements uj=δij, j=1,2,…,6, in the direction of the degrees of
freedom, while the equivalent nodal loads fi0, i=1,2,…,6, associated

Fig. 1. 2D frame element at the undeformed and deformed
configurations.
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