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The full plastic resistance under a combination of bending and axial force of tubes of all possiblewall thicknesses,
from thin cylinders to circular solid sections, does not ever seem to have been thoroughly studied, despite the fact
that this is a relatively simple analysis. The first part of this paper presents a formal analysis of the state of full
plasticity under longitudinal stresses in a right circular tube of any thickness free of cross-section distortions.
The derivation leads to relatively complicated algebraic expressions which are unsuitable for design guides
and standards, so the chief purpose of this paper is to devise suitably accurate but simple empirical descriptions
that give quite precise values for the state of full plasticity whilst avoiding the complexity of a formal exact anal-
ysis. The accuracy of each approximation is demonstrated. The two limiting cases of a thin tube (cylindrical shell)
and circular solid section are shown to be simple special cases.
The approximate expressions are particularly useful for the definition of the full plastic condition in tension
members subject to small bending actions, but also applicable to all structural members and steel building struc-
tures standards, as well as to standards on thin shells where they provide the full plastic reference resistance.
These expressions are also useful because they give simple definitions of the orientation of the plastic strain vec-
tor, which can assist in the development of analyses of the plastic collapse of arches and axially restrainedmem-
bers under bending.

© 2016 Institution of Structural Engineers. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The full plastic resistance of tubes of all possiblewall thicknesses and
under all combinations of bending and axial forces does not ever seem
to have been thoroughly studied, despite the fact that this is a well-
defined problem that requires only a fairly simple analysis. However,
the derivation leads to relatively complicated algebraic expressions
which are unsuitable for design guides and standards, so the main pur-
pose of this paper is to devise suitably accurate but simple descriptions
that give quite precise values for the state of full plasticity whilst
avoiding the complexity of a formal exact analysis. Because the condi-
tion of full plasticity of the perfect undeformed structure using ideal
elastic-plastic material properties is one of the key reference states
used in design rules [8,9,16,17], it is important that this state should
be accurately defined.

It seems very likely that othersmay have performed the formal exact
analysis for the full plastic condition under both bending and axial force
long ago, but the authors have only traced the work of [21] after the re-
view of this paper. Written in French and in a special revue, it was

somewhat inaccessible. There consequently seems to be no identifiable
basis for the rather varied full plastic interaction expressions used in
current standards (e.g. [1–3,8,15]). The focus of this paper is on the de-
velopment of suitable approximations for application in design guides
and standards, as some of the existing approximate rules in standards
are shown to be surprisingly inaccurate for such a formally precisely-
defined problem.

The formal algebraic analysis of the state of full plasticity in a tube of
any thickness is presented here, with the two limiting cases of a thin
tube (cylindrical shell) and circular solid section shown as special
cases of the full relationship. Because the general equations are too com-
plicated for use in design calculations, two different sets of approximate
formulas are presented togetherwith a demonstration of the level of ap-
proximation associated with each. Simpler approximations produce
greater errors.

These expressions are useful for the definition of the full plastic con-
dition in tubular structural members, with special application for ten-
sion members subject to small bending actions, but also applicable to
steel building structures standards and standards on thin shells where
they provide the full plastic small displacement theory reference resis-
tance. These expressions are also useful because they give simple defini-
tions of the orientation of the plastic strain vector, which can assist in
the development of plastic analyses of a particular class of redundant
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structures, including arches and axially restrained members under
bending.

It should be recognised that the ultimate resistance of tubular mem-
bers is affected by many other phenomena: elastic and elastic-plastic
stability [7,11,19], ovalisation in long members under bending [4–6,
12,13,18], nonlinearity of the stress-strain relationship in metals other
than mild steel [14] and geometric imperfections [10]. All these effects
modify the resistance significantly, but the reference resistance against
which all these modifications are made is the fully plastic state using
an ideal elastic-plastic constitutive law and the undeformed perfect ge-
ometry [20]. For this reason, the analysis presented here gives the basic
reference case, and it is important that it should be defined with
precision.

2. Full plastic cross-section analysis

2.1. Introduction

In line with the terminology used in the Eurocode standard [8], the
geometry of a tubular cross-section is here characterised by an external
diameter d and a wall thickness t, as shown in Fig. 1. The analysis here
treats thematerial as ideally plastic, with a simple linear yield boundary
between the tension and compression zones. The yield boundary is
deemed to satisfy the condition of plane sections remaining plane, lead-
ing to a straight linear boundary. Because the circular tube is symmetri-
cal about its longitudinal axis, all orientations are identical and only a
single orientation needs to be considered for conditions that might be
regarded as biaxial bending in a different axis system.

2.2. Reference full plastic resistances under the action of individual stress
resultants

The full plastic axial force Npl for a circular tubular cross-section of
external diameter d, thickness t and yield stress fy is simply given by:

Npl ¼
1
4
π d2− d−2tð Þ2
� �

f y ¼ πdt 1−
t
d

� �
f y ð1Þ

For the limiting case of a circular solid rod (d/t→ 2 or t/d→ 1/2), this
simplifies to:

Npl ¼
π
4
d2 f y ð2Þ

For the limiting case of a thin tube (d/t→∞ or t/d→ 0), the (t/d) term
becomes negligible and Eq. (1) simplifies to:

Npl ¼ πdtf y ð3Þ

Similarly, the full plastic moment Mpl for a finite-thickness tube is
given by:
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For a solid rod, the limiting case is:

Mpl ¼
1
6
d3 f y ð5Þ

For a thin tube, the terms (t/d)2 and (t/d)3 become negligible as
t/d → 0 and the limiting case is:

Mpl ¼ d2tf y ð6Þ

2.3. Reduced plastic moment in the presence of axial force for the two
limiting cases of a solid rod and thin tube

It is appropriate to present briefly the interaction relationship of the
plastic moment capacity under the effect of an axial force for the two
simpler cases of a solid rod (d/t → 2 or t/d → 1/2) and a thin tube
(d/t → ∞ or t/d → 0), as these form the two limiting reference cases
against which the more complex relationship of the finite-thickness
tube may be verified.

A fully-plastified circular cross-section under amomentM about the
centroid and axial force N acting through the centroid undergoes yield-
ing in different proportions in tension and compression depending on
the relative magnitudes of these stress resultants (Fig. 2). The Yield
Boundary (YB) between tension and compression intersects the exteri-
or surface of the tube at an angle α from the vertical. For the case of pure
bending (N= 0), α = π/2 and the YB is coincident with the Centroidal
Axis (CA) parallel to the YB.

Due to the doubly-symmetric nature of circular geometries, only the
interaction between an axial force in one sense (either tension or com-
pression) (0 ≤α b π/2) and amoment acting in one sense (either sagging
or hogging) needs to be considered to obtain the full relationship. For
clarity, the image in Fig. 2 shows a section with a larger zone in com-
pression and a smaller zone in tension, but this choice is arbitrary.
With this state of plasticity, the yield boundary YB in Fig. 2 moves
from lying through the centroid and partitions the lower half of the
cross-section into areas under tension AT1 and compression AC1. These
areas support net forces FC1 and FT1 acting through the respective cen-
troids of those areas located at distances of yC1 and yT1 respectively
from the CA. The area components and their centroidal distances from
the CA may be determined from elementary geometry.

For a solid rod, these are:

AT1 ¼ 1
8
d2 2α− sin2αð Þ yT1 ¼ 2

3
d

sin3α
2α− sin2α

 !
ð7a;bÞ
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8
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For a thin tube, these are:

AT1 ¼ αdt yT1 ¼ 1
2
d
sinα
α

ð8a;bÞ
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2
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Fig. 1. Dimensions of the cross-section.

31J.M. Rotter, A.J. Sadowski / Structures 10 (2017) 30–38



Download English Version:

https://daneshyari.com/en/article/4927872

Download Persian Version:

https://daneshyari.com/article/4927872

Daneshyari.com

https://daneshyari.com/en/article/4927872
https://daneshyari.com/article/4927872
https://daneshyari.com

