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In this paper, the use of a combination of trigonometric and low order polynomials as admissible functions to be
used with the method of assumed modes is investigated for the calculation of the natural frequencies and
modeshapes of a beamwith lumpedattachments. Since the admissible functionsdonot satisfy the boundary con-
ditions, penalty terms are used to replace the constraints of the boundary conditions of the beam, with virtual
stiffness elements of appropriate values representing the boundary conditions. By comparison with previously
obtained results, the proposed method using the assumed modes approach with admissible functions and pen-
alty terms is evaluated for accuracy and computational effectiveness. It is shown that the proposedmethod is ac-
curate and showsno ill-conditioning for the problemof an Euler-Bernoulli beamwith lumped attached elements.
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1. Introduction

The problemof determining the eigenvalues (natural frequencies) of
a dynamical system has attracted the attention of many researchers.
Several methods have been developed in the course of recent decades
to consider this problem, for example assumed modes [1,2], Lagrange
multipliers or the superposition method as developed by Gorman in
[3]. Common to all methods is the necessity to choose a set of functions
to represent the spatial domain in whichever method is chosen for the
computation of the eigenvalues and modeshapes. Since the true
eigenfunctions obtained through purely analytical approaches often in-
volve functions such as hyperbolic functions whose behaviours are nu-
merically unstable, efforts have been made to introduce alternative
admissible functions which are numerically stable and do not display
the ill-conditioning that can occur when the analytical eigenfunctions
are used.

As representative examples, Bhat in [4] introduced Characteristic Or-
thogonal Polynomials (COP) to find the first six natural frequencies of a
rectangular plate. He concluded that themutual orthogonality of the ad-
missible functions renders the mathematical procedure more straight-
forward due to the fact that the inner product of two orthogonal
functions is zero. Many researchers followed Bhat's footstep in utilizing
COP's. Ahmadi andNikkhoo in [5] used BCOP's (Bhat's Characteristic Or-
thogonal Polynomials) to solve the forced vibration problem of a non-

uniform Euler-Bernoulli beam. They employed the method of assumed
modes, as well as the Gram-Schmidt orthogonalization process to
solve for three different kinds of boundary conditions. However, they
concluded that the orthogonality condition does not present a computa-
tional advantage. Accordingly, other researchers such as Brown and
Stone in [6] also refuted or downplayed the significance of orthogonality
as a simplifying factor, concluding that the accuracy of the results is a
function of the degree of the basis original functions and not a property
related to their orthogonality. Brown and Stone also suggested that the
orthogonal polynomials provide little advantage over non-orthogonal
polynomials when it comes to accuracy.

Other researchers have investigated the use of special polynomials
to ensure numerical stability. Yuan and Dickinson employed an extend-
ed Rayleigh-Ritz approach that had previously been applied to beams to
study dynamical systems consisting of rectangular plates [7]. The au-
thors employed orthogonal polynomials developed by Bhat in [8] to
generate their admissible functions. This extended Rayleigh-Ritz ap-
proach was applied to three cases: a stepped plate, box beams and
plates with slits. They compared the results obtained for the symmetric
and antisymmetric mode shapes for the first sixteen mode shapes of a
box beam using Bhat Characteristic Orthogonal Polynomials against
those of an exclusively sine Fourier series. Close agreement was
observed.

TheRayleigh-Ritz and assumed shapemethods typically require that
the chosen functions satisfy the boundary conditions of the problems
and work has been done to investigate if this requirement can be mod-
ified. For instance, Li used a combination of Fourier series and
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compensating polynomials to simulate the free vibrations of a beam
with general boundary conditions [9]. The degree of the compensating
polynomialwas determined by the order of derivativewhichwas need-
ed. Based on the conclusion regarding the degree of the polynomial, this
method was shown to converge quickly and the addition of even a sin-
gle term to the Fourier series can make a great difference. The same au-
thor in [10] compared the convergence rate of sine and cosine Fourier
series, offering an in-depth look into themethod proposed in [9] by con-
sidering different kinds of boundary conditions. It was concluded that
the nature of the boundary condition plays a role in the convergence
rate of the series such that a simply-supported boundary condition is
most suitably represented by a sine Fourier serieswhile a cosine Fourier
series simulates a clamped-clamped boundary condition more
appropriately.

Work has also progressed along other lines of investigation, namely
analysis into the effects of the choice of basis functions that do not nec-
essarily satisfy the boundary conditions, in conjunction with penalty
methods to implement the boundary conditions. This differs from a tra-
ditional approach where the basis functions are typically chosen to sat-
isfy the boundary conditions. Monterrubio and Ilanko proposed a set of
alternative admissible functions consisting of polynomials up to 2nd de-
gree and cosine functions [2]. By only considering low degree polyno-
mials, they avoided the numerical instabilities that are intrinsic to
polynomials. They also took advantage of penalty functions to imple-
ment the boundary conditions. The authors laid out the proof for con-
vergence of their set of proposed functions in [11]. Further work by
Monterrubio in [12] used the Rayleigh-Ritz in combination with the
penalty function approach to obtain 27 frequencies and buckling pa-
rameters of a complex geometric shape with simply supported bound-
ary conditions.

The penalty function method for the implementation of boundary
conditions or other constraints was comprehensively investigated in
[13] where simultaneous use of stiffness and inertial penalty functions
to simulate beams and plates (shells) with constraints was considered.
Monterrubio and Ilanko argued the possibility of using both virtual
masses as well as virtual springs to simulate the boundary conditions.
They showed that stiffness penalty functions converge monotonically
from below while inertial (mass) penalty functions converge from
above. Subsequently, Ilanko and Dickinson investigated the effect of
using negative stiffness penalty functions for beamboundary conditions
on the convergence of the Rayleigh-Ritz approach [14]. Specifically, the
effect of using negative stiffness values alongside positive stiffness
values on the eigenvalues of a clamped-simply supported beam, as
well as a circular stepped beamwith simply supported boundary condi-
tions at both ends was investigated.

As outlined in the brief literature reviewabove, alternative choices of
functions replacing analytical eigenfunctions have been investigated for
the use of the calculation of natural frequencies of beams. However to
the best of the authors' knowledge, the application of these alternative
functions for the calculations of natural frequencies and modeshapes
of beams with lumped attachments has not been investigated to date.

The majority of the research conducted on the problem of lumped
attachments to beams has used the analytical eigenfunctions of the
same system without lumped attachments as the choice of basis func-
tions. For example, in [15] Cha applied the eigenfunctions of the bare
beam to the case of a beam with either simply-supported or cantilever
boundary conditions to which one or several lumped elements are at-
tached. The mass and stiffness matrices of the bare beam were then
modified by taking into account the values of the lumped elements, as
well as the values of the eigenfunction vector at the point of attachment.
In [16] the authors solved the fourth-order partial differential equation
for the case of a cantilever beam towhich amass-spring systemwith an
extra degree of freedom was attached in the middle, by applying the
displacement compatibility at the point of attachment. In [17], the au-
thors compared the analytical results for a beam loaded with a lumped
mass, incorporating various boundary conditions, with the approximate

results obtained using Rayleigh's expression. They concluded that al-
though the closed form Rayleigh expressions are less exact, they are
able to provide faster results. Along the same lines, thework in [18] con-
sidered the case of an added lumped mass attached to an Euler-
Bernoulli beamwith 16 different combinations of boundary conditions,
namely clamped, pinned, sliding, and free, all using analytical
eigenfunctions. Three values of point mass to beam mass ratios were
considered, and the first three normalized natural frequencies and cor-
responding normalized mode shapes were obtained for four different
mounting positions along the beam. In [19], Nicholson et al. took advan-
tage of separation of variables combined with the Green's function to
derive the exact natural frequencies and orthogonal mode shapes of a
cantilever beamwith a grounded mass-spring system, as well as a sim-
ply-supported beam with a suspended mass-spring system. They com-
pared their exact results with the approximate Galerkin approach as
well as the finite element approach. They concluded that the exact
method has precedence over the approximate methods in terms of ex-
actness and numerical economy. An older method of using Lagrange
multipliers in determining the natural frequencies of combined dynam-
ical systems is illustrated in [20], where Dowell solved the problem of a
plate with braces using the kinetic and potential energies for the free
plate. Lagrange multipliers were used to account for the presence of
braces and constraints. The eigenvalues may then be obtained after
substituting the expressions for kinetic, potential, and Lagrange multi-
pliers into Lagrange's equations.

Although the use of alternative basis functions has been investigated
and shown great promise for use with frequency analysis of beams and
plates, the same methods have yet to be applied to the case of a beam
with lumped attachments. In this paper, we combine the use of the set
of functions developed byMonterrubio and Ilanko in [2] with the penal-
ty function method to obtain the natural frequencies and modeshapes
of an Euler-Bernoulli beam with either simply-supported or clamped-
free boundary conditions. Then, the effects of adding lumped attach-
ments on the effectiveness of themethod are investigated and the find-
ings are compared with previously published results in the literature.

2. Theory

2.1. Derivation of the equations of motion

The method of assumed modes is often used to discretize a dynam-
ical system,much in the samemanner as Finite Element Analysis (FEA).
However, unlike FEA this method employs global elements rather than
finite elements and superimposes a finite number of assumed
modeshapes to simulate the vibrations of the dynamical system. This
method is explained in full detail in [21].

In this paper, the method of assumed modes is used to model the
transverse vibrations of an Euler-Bernoulli beam with attachments.
The transverse displacements of the beamw, are assumed to be separa-
ble functions of space and time. Therefore, the transverse vibration of
the beam w(x, t) are assumed to be given by the mathematical form

w x; tð Þ ¼ W xð Þ cos ωtð Þ ð1Þ

where x is the position along the beam, t represents time, ω is the fre-
quency of vibration and W represents the amplitude of vibration. The
space-dependent function, W, is assumed to be a sum of assumed
modes and thus to have the form

W xð Þ ¼ ∑
N

i¼1
ciϕi xð Þ ð2Þ

Eq. (2) is then substituted into Rayleigh's quotient to determine the
mass and stiffness matrices and thus solve for the eigenvalues (natural
frequencies) and eigenvectors (modeshapes).
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