Sustainable Cities and Society 35 (2017) 565-573

Contents lists available at ScienceDirect

Sustainable Cities
and Society

Sustainable Cities and Society

journal homepage: www.elsevier.com/locate/scs

Decision-making based on network visualization applied to building life
cycle optimization

@ CrossMark

Fraisse Gilles”, Souyri Bernard, Axaopoulos Ioannis, Rouchier Simon

LOCIE, UMR CNRS 5271, Université Savoie Mont-Blanc, 73376 Bourget du Lac, France

ARTICLE INFO ABSTRACT

We present a building design optimization methodology that has been developed to address issues that re-
searchers and engineers are currently facing when addressing the life cycle optimization of Nearly Zero Energy
Buildings (NZEBs). In order to reduce the required computational time, a Kriging model is used to surrogate
NZEB performance criteria during the optimization process. The error estimation of the Kriging model is used for
an adaptive sequential design to improve the Kriging model accuracy. A genetic algorithm (NSGA-II) is con-
sidered efficient to find the global optimal solutions. We also propose a new algorithm to reduce the calculation
time even further. The new individuals of the adaptive sequential design are filtered with satisfaction functions.
It means that only the useful part of the Pareto front will be determined. Finally, we use network visualization for
decision-making. We show that this approach is very powerful to help designers find one solution in the context
of multi-objective optimization. Moreover, the partitions can give useful information about the characteristics of
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the optimal solutions.

1. Introduction

The residential sector consumes about 40% of the total annual final
energy of developed countries (IEA, 2008). In 2015, the final energy
consumption of the residential sector was 25.3% of the total final en-
ergy consumption in the European Union (EU). The energy ratio used
by the EU households in 2015 for space heating was 64.7%, for do-
mestic hot water (DHW) 13.9%, for lighting and other appliances
13.8%, and for air conditioning 0.5% of the total final energy of the
residential sector. In an attempt to reduce the energy use in buildings,
the EU applied a policy named “Energy Performance of Buildings Di-
rective” (EPBD). The concept of “nearly Zero-Energy Buildings” (NZEB)
has been defined in the EPBD: these buildings balance their small yearly
energy consumption with electrical production using renewable energy.
By the end of 2020, all new buildings will be required to be NZEBs.

The Energy Building Design (EBD) for NZEB is challenging in many
ways. One challenge is to cover a large amount of their energy needs
using renewable energy sources (RES) (Kalkan, Young, & Celiktas,
2012; Comodi et al., 2014; Marszal & Heiselberg, 2011). This is pro-
blematic because RES depend highly on the climate of the building
location. This means that the energy supply from RES does not always
match the energy needs (Cao, Hasan, & Sirén, 2013). The designer
cannot therefore easily size, for example, the required installed power
of the RES and the storage capacities (thermal and electrical) to meet
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the energy needs. Considering electricity, as feed in tariff variation is a
downward trend, storage with batteries and self-consumption also be-
come key issues.

Another challenge is to reduce the relatively high value of NZEBs
embodied energy compared to their annual energy consumption
(Giordano, Serra, Demaria, & Duzel, 2017; Giordano, Serra, Tortalla,
Valentini, & Aghemo, 2015; Blengini & Di Carlo, 2010; Karimpour et al.,
2014; Ramesh, Prakash, & Shukla, 2010). Once the operational energy
needs of a building during its lifetime are balanced by the use of RES,
then the embodied energy, i.e. the energy used during its construction,
becomes significant (Chen & Ng, 2016; Chastas & Theodosiou, 2016;
Ayaz & Yang, 2009; Fieldson, Rai, & Sodagar, 2009; Ibn-Mohammed,
Greenough, Taylor, Ozawa-Meida, & Acquaye, 2013). This leads the
designer of a NZEB to perform life cycle analysis (LCA) which is a more
comprehensive approach that includes embodied energy assessment.
Considering the building life time, the designer should also account for
the climate change. Roux, Schalbart, Assoumou, and Peuportier (2016)
performed a LCA and life cycle cost (LCC) assessment and Song and Ye
(2017) an energy consumption analysis on residential buildings, both
incorporating a weather data prediction on the climate on future years.
To account for climate change, more dynamic simulations on possible
climate scenarios are required. These extra simulations add to the
overall increase of computational time.

In addition, another issue is the complexity of modeling a NZEB as a
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whole (envelope, systems, etc.) that increases the computational time
even further. Therefore, NZEB optimization needs to reduce the re-
quired computational time using specific = methodologies
(Wetter & Polak, 2004; Magnier et al., 2010). Moreover, the designer of
a NZEB should consider many performance criteria, such as the cost,
thermal comfort, embodied energy, CO, emissions, energy consump-
tion, RES production, durability... All of the factors mentioned above
lead to the need for a global approach of NZEB optimization (Evins,
2013). Thus, the designer should perform a multi-objective optimiza-
tion that will result in many possible optimal solutions. These optimal
solutions can be presented in a Pareto front.

Pareto fronts can be a good tool for the decision maker to choose a
solution but it can be rather impractical for more than two performance
criteria. There are many different Multi-Criteria Decision Making
Analysis (MCDA) methods that can be used to post-process optimal
solutions in EBD. Among these MCDA methods are TOPSIS e.g. used by
Jin, Favoino, and Overend (2017), Wang et al. (2017); Analytical
Hierarchy Process (AHP) e.g. used by Si, Marjanovic-Halburd, Nasiri,
and Bel (2016), Roberti, Oberegger, Lucchi, and Troi (2017), Mulliner,
Malys, and Maliene (2016); Elimination and Choice Expressing the
Reality (ELECTRE) e.g. used by Catalina, Virgone, and Blanco (2011);
Complex Proportion Assessment (COPRAS) e.g. used by Volvaciovas,
Turskis, AviZza, and Mikstiené (2013), Mulliner et al. (2016); SMAA
(Stochastic Multi-criteria Acceptability Analysis) e.g. used by Iwaro,
Mwasha, Williams, and Zico (2014) and Stochastic Multicriteria Ac-
ceptability Analysis used by Kontu, Rinne, Olkkonen, Lahdelma, and
Salminen (2015). Furthermore, it is not common in EBD literature, to
use decision making tools before post-processing, i.e. integrated in the
optimization algorithm (Cherif, Chabchoub, & Aouni, 2008). This could
help reduce calculation time if the optimal solutions of little interest
were not considered.

Building and energy systems optimization is currently a very active
research area. Many authors are interested in optimizing a building’s
envelope and energy systems considering more than one performance
criteria, i.e. multiobjective optimization (MOO) (Antipova, Boer,
Guillén-Gosalbez, Cabeza, & Jiménez, 2014; Carreras et al., 2014), like
Wu, Mavromatidis, Orehounig, and Carmeliet (2017) that apply a
mixed integer linear program (MILP) optimization to minimize both the
greenhouses gas (GHG) emissions and the life cycle cost of buildings’
energy systems and envelope on a community level. Others, like Penna,
Prada, Cappelletti, and Gasparella (2015) take three objectives into
account (energy savings, costs and indoor thermal comfort) and apply
the NSGA-II algorithm to define the optimal energy measures on a
building as a whole, including both energy systems and envelope.
Moreover, Evins (2013), Attia et al. (2013) and Machairas et al. (2014)
have presented detailed literature reviews on optimization methods,
used for EBD. In reviewed EBD literature it is less common to optimize
more than three objective functions simultaneously (Penna et al.,
2015).

The commonly used algorithms in building energy efficient design
optimization can be grouped into three categories, namely evolutionary
algorithms, gradient-based search algorithms, and hybrid algorithms
(Terzidis, 2006). Several reviews that focus on performance-based
building design optimization or similar methods are available. Evins
(2013) conducted a review on computational optimization methods
applied to sustainable building design. Nguyen, Reiter, and Rigo (2014)
reviewed simulation-based optimization methods in building perfor-
mance analysis. Machairas, Tsangrassoulis, and Axarli (2014) took a
different angle and reviewed the algorithms used in performance-based
building design optimization. Attia, Hamdy, O’Brien, and Carlucci
(2013) reviewed the gaps and needs for integrating building perfor-
mance optimization tools in NZEB design.

A current trend in EBD optimization is to reduce computational time
using surrogate models (SM) to mimic time-costly transient simulation
models. Carreras et al. (2016) apply an optimization of two objectives,
to minimize cost and environmental impact of a building envelope
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using a SM (cubic spline interpolation) to reduce computational time.

These SM may be classified based on their employed techniques:
Radial basis function, Kriging (KR), support vector regression (SVR),
artificial neural network (ANN), multivariate adaptive regression
splines (MARS), and others. Bornatico, Hiissy, Witzig, and Guzzella
(2013) respectively apply Radial basis function surrogate modeling on a
MOO to maximize solar yield and to minimize investments costs of a
solar domestic hot water (SDHW) system. Kriging is a non-parametric
technique, suitable for the identification of long term temporal and
spatial trends (Zavala, Constantinescu, Krause, & Anitescu, 2009). Fur-
thermore, one of its special features is the ability to predict not only
numerical values, but also uncertainty boundaries. Many authors use
Kriging to predict building energy performance, as Hopfe, Emmerich,
Marijt, and Hensen (2012), Tresidder, Zhang, and Forrester (2016), Van
Gelder, Das, Janssen, and Roels (2014) and Eguia, Granada, Alonso,
Arce, and Saavedra (2016).

A different technique with similar applications is Support Vector
Machines (SVM). The main advantage of SVM over ANN is related to
the fact that the statistical learning process is cast as a convex optimi-
zation problem (Boyd & Vandenberghe, 2004). Eisenhower, O’Neill,
Narayanan, Fonoberov, and Mezi¢ (2012) uses SVM to perform a
model-based MOO to minimize thermal discomfort (PMV) and annual
energy consumption.

ANN is a parametric technique that has the ability to learn complex
patterns (Beccali, Cellura, Lo Brano, & Marvuglia, 2004) and simulate
non-linear systems (Kanarachos & Geramanis, 1998). Also, ANN is ef-
ficient in building studies (Magnier & Haghighat, 2010). It is the
dominant technique for building energy performance (Ascione, Bianco,
De Stasio, Mauro, & Vanoli, 2017).

However, in the case of a time-consuming transient simulation
model, KR has a far lower training time compared to ANN because less
samples would be needed. Usually, in EDB literature, Multivariate
Adaptive Regression Splines (MARS) are preferred to KR because of
their simplicity and clear relationship between inputs and outputs (Van
Gelder et al., 2014).

MARS is an adaptive non-parametric regression method (Friedman,
1991). MARS has seen surprisingly little application in building-related
studies to date (Cheng & Cao, 2014). Kusiak, Li, and Tang (2010)
compares MARS to other SM in a model-based MOO problem, using a
Particle swarm optimization (PSO) algorithm to minimize the energy
consumption of a HVAC system.

Sequential design strategies for SM have been studied in the context
of deterministic computer experiments, to perform either prediction or
optimization (Kleijnen, 2017). Cheng and Cao (2014) used a hybrid
technique, MARS and artificial bee colony in adaptive design of a SM to
predict heating and cooling load of buildings. Ramallo-Gonzéalez and
Coley (2014) apply a Covariate Matrix Adaption Evolutionary Strategy
(CMA-ES-SA) optimization, to minimize cooling and heating demands
of a building.

In the following sections, we present an EBD optimization metho-
dology that has been developed to address issues that researchers and
engineers are currently facing with the life cycle optimization of NZEBs.
In order to reduce the required computational time, a Kriging model is
trained to surrogate NZEB performance criteria during the optimization
process. The error estimation of the Kriging model is used for an
adaptive sequential design to improve the Kriging model accuracy. A
genetic algorithm (NSGA-II) is implemented to find the global optimal
solutions. We also propose a new algorithm to reduce the calculation
time even more. The new individuals of the adaptive sequential design
are filtered with satisfaction functions (Cherif et al., 2008). It means
that only the useful part of the Pareto front will be determined. Finally,
we use network visualization for MCDA. We show that this approach is
very powerful to help designers find one solution in the case of multi-
objective optimization. Moreover, the partitions can give useful in-
formation about the characteristics of the optimal solutions.
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