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A B S T R A C T

In the present study, considering two-dimensional porosity distribution through a functionally graded porous
(FGP) beam, its optimal distributions are obtained. A multi-objective optimization problem is defined to max-
imize critical buckling load and minimize mass of the beam, simultaneously. To this end, Timoshenko beam
theory is employed and equilibrium equations for two-dimensional functionally graded porous (2D-FGP) beam
are derived. For the solution, we present generalized differential quadrature method (GDQM) and consider two
symmetric boundary conditions (Clamped-Clamped and Hinged-Hinged). Solving generalized eigenvalue pro-
blem, critical buckling load for 2D-FGP beam is then obtained. During optimization procedure, a cubic poly-
nomial spline interpolating on a finite number of design variables is considered as porosity distribution function.
Solving the multi-objective optimization problem using bio-inspired genetic algorithm (NSGA II), leads to a set of
optimal porosity distributions known as Pareto optimal solutions. To show the validity of the proposed for-
mulation, we compare results with those reported (1D and 2D porosity distributions) in the literature as well as
finite element simulations. We also compare Pareto solutions with optimization result of one dimensional
porosity distribution which clearly demonstrates the importance of the presented optimization procedure. In
general, optimum porosity distributions are different in each boundary condition. However, in most of the
optimum solutions, middle line of the beam is composed of the material with higher values of porosity and outer
corners have lower values of porosity. Pareto optimal solutions also indicate that, sharp decreasing of the mass
makes a slight decline in critical buckling load when it has large values. The proposed approach can be used for
design of porosity distribution in FGP structures.

1. Introduction

Porous materials have been widely used in many engineering ap-
plications, such as those related to lightweight structures, biomedical
instruments and aerospace [1–3]. Inspired by natural bone, a paradigm
shift is currently occurring in porous materials design from homo-
geneous porosity distribution to functionally graded one (hetero-
geneous porosity distributions) [4,5]. Tailoring the desired properties is
then achievable by graded porosity distribution. Recently, functionally
graded porous (FGP) structures with complex geometries have been
fabricated using advanced manufacturing techniques, known as solid
free-form fabrication or rapid prototyping [6]. Considering the ad-
vantages of FGP structures and improved fabrication technologies,
naturally induces the investigation of porosity distribution.

The analysis of structures with uniform porosity distribution has
been considered in several works. Simone and Gibson [7] demonstrated
the suitability of uniformly distributed porosity structures in compo-
nents, including honeycomb beams, sandwich panels, and cylindrical

shells with porous cores. Wieding et al. [8] carried out a finite element
analysis on the biomechanical stability of cylindrical porous titanium to
act as bone scaffolds. Magnucki et al. [9] considered bending and
buckling analysis of a rectangular porous plate to demonstrate the in-
fluence of porosity and thickness on the critical buckling load. Jabbari
et al. [10] proposed buckling analysis of a circular plate with uniform
porosity distribution, investigating the effects of different porosity and
thickness values.

Stability and vibration analysis of FGP structures with a prescribed
one-dimensional (1D) porosity distributions have been studied in some
works. Chen et al. [11,12] conducted stability, bending, free and forced
vibration analysis of FGP beams while porosity varies along thickness.
The results demonstrate fine performance of symmetric porosity dis-
tribution. In another study, similar 1D porosity distribution has been
considered in order to analyze nonlinear free vibration of a sandwich
beam with a FGP core [13]. Ebrahimi and Zia [3] investigated non-
linear vibration characteristics of functionally graded (FG) Timoshenko
beams made of porous materials. Feyzi and Khorshidvand [14] carried
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out an analytical study of a FGP circular plate post-buckling saturated
by fluid, where porosity varies through the thickness. The results de-
monstrate a noticeable effect of porosity distribution function on the
results. Mojahedin et al. [15] similarly conducted buckling analysis of
FGP circular plates based on higher order shear deformation theory.
Hadji and Adda Bedia [16] implemented a new displacement field
based on refined shear deformation theory to present free vibration of
FGP beam with porosity distribution along thickness direction. Zhang
et al. [4] discussed the production procedure of FGP shape memory
alloys and demonstrated their good performance in comparison with
uniformly distributed porosity structures. Moreover, Yahia et al. [17]
considered FG plates with porosity phases occurred during fabrication
process. Results are useful especially for the ultrasonic inspection
techniques and structural health monitoring.

It is quite clear that optimization of porosity distribution can be an
eminently effective method to improve structural characteristics, such
as mass and critical buckling load. Despite the importance of this topic,
there are just limited works related to volume fraction optimization in
the FG structures, which can somehow be considered similar to the
optimization of porosity distribution. Asgari [18] dealt with the opti-
mization of volume fraction in a thick hollow FG cylinder in order to
improve wave propagation behavior. In another study, the same author
implemented this approach to find optimal material distribution for a
prescribed temperature field in transient heat conduction [19]. The
results indicate that employing the optimal material distribution can
considerably affect objective functions, such as distribution of tem-
perature and mass, compared to the power law volume fraction dis-
tribution. Goupee and Vel [20] have also proposed optimal material
distributions of FG materials to simultaneously minimize the mass and
maximize the factor of safety for steady thermomechanical processes.
Wieding et al. [21] considered optimization of open-cell porous struc-
tures to match the elastic properties of human cortical bone. They de-
monstrated that the optimization procedure can be a beneficial tool to
reduce the amount of the required material without affecting the bio-
mechanical performance of the structure.

Since stability analysis and optimal tailoring of material distribution
have great significance, in the present study despite the conventional
1D porosity distribution, the optimization of porosity distribution in a
2D-FGP beam is considered. To this end, we study a FGP beam where
porosity varies through the thickness and longitudinal directions. The
objective functions are mass and critical buckling load, which are si-
multaneously minimized and maximized, respectively. In Section 2, the
virtual work principle is employed to derive equilibrium equations of a
2D-FGP Timoshenko beam. We also present the generalized differential
quadrature method (GDQM) for the solution of derived equations. The
critical buckling load for 2D-FGP beams of unknown porosity dis-
tributions under two symmetric boundary conditions (BCs), i.e.,
Hinged-Hinged and Clamped-Clamped are also presented. In Section 3,
a multi-objective optimization problem is proposed to simultaneously
maximize critical buckling load and minimize mass where porosity
distribution is considered to be unknown in the optimization problem.
The porosity values on a finite number of points in the beam are then
considered as design variables. We propose a cubic polynomial spline in
order to determine porosity value at any arbitrary point. The design
variables are then optimally determined employing the non-dominated
sorting genetic algorithm (NSGA II). In Section 4, we validate the re-
sults of the presented formulation with a 1D porosity distribution
available in the literature and 2D porosity distribution using finite
element simulation in commercial software (ABAQUS). Optimal solu-
tions, known as Pareto optimal solutions, are also compared with the
optimization results of 1D porosity distribution under different BCs.
Finally, we draw some conclusions in Section 5.

2. Functionally graded porous beam

We assume a FGP beam with a rectangular cross-section of unit

width, thickness h and length l, as shown in Fig. 1. Porosity and con-
sequently Young's modulus vary both in the thickness and longitudinal
directions, and are related as [22]:
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where E x z( , ) and f x z( , ) demonstrate, respectively, the Young's
modulus and porosity at an arbitrary point while Emax denotes the
Young's modulus of the dense material. It should be noted that the
Poisson's ratio ϑ is considered constant, as already assumed in several
studies [11,12,22].

For the analysis of the FGP beam, the Timoshenko beam theory is
employed, in which the displacement field can be presented as:
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where u and w are displacements along x and z directions at time t in
terms of the mid-surface ( =z 0) displacements (u0 and w0) and rotation
of the cross-section (θ).

The non-zero components of linear strain in terms of mid-surface
displacements and rotation are then expressed as:
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where εxx and γxz are normal and transverse shear strains, respectively.
According to the generalized Hook's law, normal stress σxx and shear

stress σxz can be written as:
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The relationship between stress resultants and stress components
can also be expressed as [23,24]:
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where is the shear correction factor considered normally for rectangular
section [24,25]. Substituting Eqs. (4), (5) and (7) into Eq. (6), and re-
writing Eqs. (8)–(10), the stress resultants are obtained as:
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Fig. 1. Schematic of functionally graded porous beam.
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