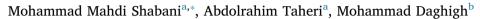
ELSEVIER

Contents lists available at ScienceDirect

Thin-Walled Structures


journal homepage: www.elsevier.com/locate/tws

CrossMark

Full length article

Reliability assessment of free spanning subsea pipeline

- ^a Petroleum University of Technology, Department of Offshore Engineering, Berium, Abadan, Islamic Republic of Iran
- b Faculty Member of Islamic Azad University, Science and Research Branch and Member of Pars Oil and Gas Company, Tehran, Islamic Republic of Iran

ARTICLE INFO

Keywords: Subsea pipeline Reliability assessment Free spanning

ABSTRACT

Reliability of free spanning subsea pipeline has been estimated using theory of Probability of Failure (POF) and has been analyzed in accordance with a target safety level. The POF has been calculated using First-Order Reliability Method (FORM) and Monte-Carlo Sampling (MCS). The changes in POF with regard to six different ratios of span length to pipeline diameter and six clay types and also three sand classes are calculated. Finally, sensitivity analysis is carried out to determine the contribution of each parameter on POF. It is concluded that FORM analysis can be applied for large ratios of span length to pipeline diameter.

1. Introduction

Subsea pipelines are used for a number of purposes in development of subsea hydrocarbon resources. Generally, subsea pipelines carry oil and gas products from wellhead to the riser base. The design of pipelines is usually performed in three stages; conceptual design engineering, Front End Engineering Design (FEED) engineering and detail design engineering [1].

The main objectives of FEED are; verifying the size of pipeline, determining Pipeline Wall Thickness (PWT) with its relevant grade, and validating pipeline in accordance to design and codes requirements for installation and operation stages [1,2].

Subsea pipelines are subjected to various types of phenomena, like fatigue, corrosion, etc. which cause pipeline failure and should be monitored to guarantee safety of pipeline [3]. According to DNV-Os-F101, fatigue assessment of pipeline must be performed at any stages (i.e. installation and operation) [4]. The free spanning as one of the important causes of fatigue occurs due to seabed unevenness, changes in seabed topology, artificial supports, and scours [1,5].

If the vortex shedding frequency which is caused by a normal flow reaches to the natural frequency of pipeline, pipeline starts to vibrate and Vortex Induced Vibration(VIV) occurs which may eventually causes pipeline fatigue damage [5]. Based on the interaction of adjacent spans, free span analysis is performed in two ways; static analysis (for isolated span i.e. single span) and dynamic analysis (for interacted spans i.e. multi-span) [6].

In this paper, first deterministic-based VIV fatigue assessment is carried out to determine fatigue life capacity of a pipeline located in Iranian South Pars Gas Field. Then, considering the uncertainties in both pipeline specifications and soil stiffness, POF is estimated using FORM and MCS for various clay types. Finally, sensitivity analysis considering nine soil classes and six span length to pipeline diameter is carried out to determine effect of each parameter on POF.

2. VIV fatigue assessment

2.1. Methodology

For determining fatigue life capacity of a pipeline, the following procedure should be done (see Fig. 1).

In Fig. 1, L is the span length, D is the pipeline outside diameter (considering coating layer), $U_{\rm c}$ is the current velocity amplitude, and $U_{\rm w}$ is the significant wave-induced velocity amplitude.

DNV divided the free spanning pipeline behavior into three categories based on the ratio of span length to pipeline diameter; beam dominant behavior (for 30 < L/D < 100), combined beam and cable behavior (for 100 < L/D < 200) and cable dominant behavior (for L/D > 200) [6]. In the first category, pipeline response can be estimated by deterministic theories, i.e. Bernoulli's beam theory. However, in the second and third classes, the beam theory is not applicable and the dynamic response must be predicted by solving differential equation i.e. equation of motion (for more information see reference [8]).

2.2. Fatigue criterion

There are three approaches for fatigue assessment as shown in Fig. 2

The traditional stress-based approach was developed in 1955 which

E-mail addresses: m.shabani@mnc.put.ac.ir (M.M. Shabani), rahim.taheri@put.ac.ir (A. Taheri), daghigh@pogc.ir (M. Daghigh).

^{*} Corresponding author.

Nomenclature		T_{fat}	Fatigue life capacity
		U_c	the significant current-induced velocity amplitude
Α	Maximum Stress Amplitude	U_w	the significant wave-induced velocity amplitude
C_L	dynamic stiffness factors in horizontal direction	$lpha_i$	Important measurement for ith parameter
C_v	dynamic stiffness factors in vertical direction	β	RI
CSF	concrete stiffness enhancement factor	$\Delta\sigma$	Stress range
D	Pipeline outer diameter	ν	Poisson's ratio
D_s	steel diameter	ρ	water density
D_{fat}^{cum}	Cumulative Palmgren-Miner fatigue damage	$\rho_{\rm s}$	soil density
E	Young's modulus	C.O.V	Coefficient of Variation
g(x)	LSF in real space	FORM	First-Order Reliability Method
G	Cumulative form of LSF in standard normalized space	LSF	Limit State Function
K_L	Horizontal soil stiffness	MCS	Monte-Carlo Sampling
K_V	Vertical soil stiffness	POF	Probability Of Failure
L_{eff}	effective span length	PWT	Pipeline Wall Thickness
m	the negative inverse slope of S-N curve	RI	Reliability Index
N_i	number of cycles to failure for stress block i	SMYS	Significant Mean Yield Stress
n_i	number of stress cycles for stress block i	SMTS	Significant Mean Tensile Stress
R_i	Reliability value of ith block	VIV	Vortex Induced Vibration
S	Standard deviation		

is based on the nominal (average) stresses. The nominal stress that can be resisted under cyclic loading is determined by considering mean stress [9]. DNV recommends using stress-based approach for pipeline fatigue assessment [4,7]. The main method for determination of fatigue damage in stress-based approach due to cyclic loads is S-N curve which can be plotted using test data (see Fig. 3) [11].

According to DNV-RP-C203, the basic design S-N curve is given as [1,10]:

$$\log N = \log \overline{a} - m \log \Delta \sigma \tag{1}$$

Where N is the predicted number of cycles to failure, $\Delta \sigma$ is the stress range, m is the negative inverse slope of S-N curve, $\log \overline{a}$ is the intercept of \log N-axis by S-N curve. $\log \overline{a}$ is given by the following equation:

$$\log \overline{a} = \log a - 2s \tag{2}$$

Where a is a constant relating to mean S-N curve and s is the standard deviation of $\log N$. The strain-based approach involves more detailed

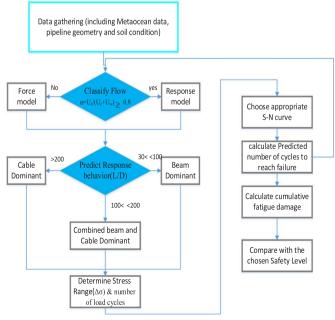


Fig. 1. VIV fatigue assessment procedure [1,4,5].

analysis of the localized yielding that may occur at stress raisers during cyclic loading. Finally, fracture mechanics approach specifically treats growing cracks by the methods of fracture mechanics (for more information see reference [12]).

2.3. Pipe-soil interaction

DNV classifies seabed soil into two classes; clay and sand. DNV classifications with their subsets are presented in Fig. 4.

The soil stiffness in both horizontal and vertical directions affects the maximum amplitude response of oscillation. In the absence of sufficient detailed information about soil specification, soil stiffness can be calculated through the following equations [6]:

$$K_V = \frac{C_v}{1 - \nu} \left(\frac{2}{3} \frac{\rho_s}{\rho} + \frac{1}{3} \right) \sqrt{D} \tag{3}$$

$$K_L = C_L (1 + \nu) \left(\frac{2}{3} \frac{\rho_s}{\rho} + \frac{1}{3} \right) \sqrt{D}$$
 (4)

where K_V and K_L are vertical and horizontal stiffness, respectively. C_{ν} and C_L are dynamic stiffness factors in vertical and horizontal directions, ν is the Poisson's ratio, ρ_s is the soil density and ρ is the water density. The value of the above parameters can be determined from Table 1. Because of neglecting the effect of soil interaction for single span, DNV recommended equations for determining soil stiffness (Eqs. (3) and (4)) lead to conservative results [13].

In order to determine the *Maximum Stress Amplitude*(MSA) (*A*) due to VIV, DNV recommended the following equation (valid for $L/D_s < 140$) [6]:

Fig. 2. Major approaches for analyzing and designing fatigue [9].

Download English Version:

https://daneshyari.com/en/article/4928348

Download Persian Version:

https://daneshyari.com/article/4928348

Daneshyari.com