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A B S T R A C T

For accurately predicting the local stresses around the loading points, a stress function in the form of trigono-
metric series (TS) was applied to obtain the displacements and stresses for simply supported thin beams under
concentrated multiloads. The convergences of TS solutions were testified for both displacements and stresses,
where the convergence criteria were established and the proper iteration numbers were given. Besides, the
accuracy of TS solutions was verified by finite element analysis, where the stress concentration effect is obvious
for the shear stresses around the loading sections, not following the parabolic distribution proposed in litera-
tures. Finally, taking thin beams under multi-wheels loads as an example, parameter studies were then per-
formed to examine the effects of wheels' numbers, distances and locations on the flexural response of beams.
Numerical results were summarized into a series of curves indicating the distribution of displacements and
stresses for various parameters.

1. Introduction

Simply supported thin beams subjected to concentrated loads are a
class of mechanic problems generally encountered in practical en-
gineering, such as the web of I-shaped girders or off-track box girders
under wheel loads, as shown in Fig. 1. Unlike the uniform load, the
stress concentration around the loading point is generally obvious,
which possibly induces the local buckling before overall yielding, so
that more attentions need to be paid in design.

Due to the practical importance, the concentrated loading case has
been focused by many researchers since the 1903's. The stress of an
infinite long beam under two equal and opposite concentrated loads
was initially analyzed by Filon using Fourier series [1], and he found
that the stresses around the loading point were remarkable and di-
minished rapidly with the increment of the distance from the loading
point. However, the convergence property around the loading point is
not clear and the proper iteration numbers are not clearly specified for
stresses and displacements. Afterwards, Seewald [2] solved the pro-
blems on the infinite long beam loaded by a concentrated force based
on the semi-infinite-plane theory, and found out that the vertical stress
(normal to the axis) has a good agreement with the exact solution from
the Fourier series solution [1], but the warping one (along the neutral

axis) at the bottom edge of the beam has a large deviation up to 90.9%.
Similarly, Wang [3] solved the warping stress of the deep beam sub-
jected to a concentrated load by using the semi-infinite-plane theory
and the superposition principle, however, the error for the warping
stress at the top edge reaches to 26.3% in comparison with the finite
element analysis (FEA) result. In FE analysis, gradually refined grid will
lead to the large increment of local stress at the loading point, which
well corresponds to the infinite stress at the loading point obtained
from the Fourier series method [1] and the semi-infinite-plane theory
[2,3].

According to the simplification of the deformation, many beam
theories have been established, including the classical beam theory
(CBT), the first-order beam theory (FBT), and the high-order beam
theory (HBT). The CBT known as the Euler-Bernoulli beam [4] is only
applicable to slender beams. While for thick or deep beams, the CBT
underestimates deflection and overestimate natural frequency and
buckling load due to the ignorance of the transverse shear deformation
effect [5]. The FBT known as the Timoshenko beam theory [6,7] is
proposed to overcome the drawback of CBT by accounting for the
transverse shear deformation effect for deep beams. In FBT, a shear
correction factor (SCF) is needed to compensate the discrepancy be-
tween the actual stress state and the assumed constant stress state since
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the FBT violates the zero shear stress boundary conditions on beam
edges [8]. The SCF depends on various parameters, such as geometry
configurations, material properties, boundary conditions [9]; and,
therefore, it needs a further research [10].

Besides, in order to avoid the use of SCF and get a better estimation
of behavior of deep beams, the HBT, represented by various shape
functions for the shear stress, has been developed, including the third-
order theory [11], the trigonometric theory [12], the hyperbolic theory
[13], the exponential theory [14,15], the mixed theory [16–19]. Al-
though these HBTs were initially proposed for plates and shells, ap-
plication of the shape functions to beams is immediate. Based on the
assumption of a high-order variation of axial displacement and a con-
stant transverse displacement, most of HBTs comply with the zero shear
stress boundary conditions and produce a non-linear (generally para-
bolic-shaped) distribution for the transverse shear stress through the
beam height. Applying a high-order variation to both axial and trans-
versal displacements [17,18], Carrera [20–24] proposed the Carrera
Unified Formulation (CUF). Then, Demasi [25] provides a hierarchical
formulation leading to very accurate FE models for beams, plates and
shells, in which the stretching effect is automatically taken into ac-
count.

A detailed observation on the literature reveals that the transverse
shear strain generally varies in the form of parabolic function in most of
HBTs. However, this parabolic variation may not be applicable to the
shear strain around the loading sections for beams under concentrated
loads, due to the stress concentration. Therefore, this paper deals with
the flexural behavior of thin beams under concentrated multiloads by
using the trigonometric series (TS) method. The emphasis is placed on
the convergence property of TS solutions for both stresses and dis-
placements, especially for those around the loading points, where two
convergence criteria were established depending on the iteration type,
and the proper iteration numbers were given. Also, the accuracy of TS
solutions is verified by FEA for both displacements and stresses, espe-
cially for the transverse shear stresses around the loading sections,
where the stress concentration is obvious, not following the parabolic-
shaped distribution proposed in literatures. Finally, taking thin beams
under multi-wheels loads in parameter study, the effects of wheels'
numbers, distances and locations on the displacements and stresses are
investigated respectively.

2. Trigonometric series method

A thin beam with rectangular cross section subjected to a con-
centrated load is investigated firstly in Fig. 2a. Due to the small
variability of stresses within the beam thickness, the original 3D beam
model can be simplified into a 2D one with a unit thickness, as shown in
Fig. 2, and the load is correspondingly transferred to P/t. For analysis,
the coordinate system O-yz is established in Fig. 2b with its original
point O set on left top of the beam. The beam is made of a homo-
geneous, isotropic and linearly elastic material with Young's and shear
moduli E and G, respectively. The span is l and the height is h. The

concentrated load P/t is applied at zP on the upper edge. The y-/z-axial
displacements are v and w, respectively.

Considering the discontinuity for concentrated load, the stress
function φ needs to be expanded in the form of trigonometric series
(TS), given by
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where i is the iteration number. αi=iπ/l. Ai and Bi are the constant
coefficients to be determined by boundary conditions.

Substituting Eq. (1) into the compatibility equation,

∂
∂

+
∂

∂ ∂
+

∂
∂

=
φ

z
φ

z y
φ

y
2 0

4

4

4

2 2

4

4 (2)

a four-order differentiate equation is obtained,
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where the subscripts (2) and (4) indicate the second- and four-order
differentiates over variable y, respectively. The solution then is
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where cki (k=1, 2, 3, 4) are constant coefficients.
Consequently, the stress function φ is
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Based on the relations between the stress function φ and the
stresses, we have
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In order to obtain the coefficients cki, the concentrated load P/t is
also expanded in the form of TS. To do this, we assume that the load P/t
is acted within a infinitesimal domain [zP –ε/2, zP+ε/2], given by
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where ε is the size of domain. Substitute the Eqs. (6)–(8) into the stress
boundary conditions,

Fig. 1. Examples of thin beams (webs) under concentrated wheel loads.

Fig. 2. Thin beam under single concentrated load.
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