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A B S T R A C T

Vibration, buckling and flutter instability of delaminated composite beams are studied in this paper. An ana-
lytical solution is presented for instability of a composite beam with a single delamination subjected to con-
centrated follower force. Using Euler-Bernoulli beam theory and Classical Lamination Theory, equation of
motion of a delaminated beam is derived and solved analytically for free vibration, buckling and flutter in-
stability. After validating the results, effect of delamination location, delamination length and stacking sequence
on fundamental frequency, buckling load and flutter load are studied. Results show that for a cantilever beam,
when delamination moves from surface of the beam to its mid-plane, fundamental frequency and buckling load
decreased while flutter load is increased.

1. Introduction

Due to numerous advantages of fiber-reinforced laminated compo-
sites such as high stiffness to density ratio and best match the design
requirements of a specific structural application, these materials are
used extensively in many industries. For this reason, many researchers
are interested in studying the behavior of composite structures such as
stress analysis [1,2], free vibration [3,4], linear and non-linear buckling
[5,6] and dynamic stability [7–9]. Nevertheless, the analysis of these
materials is far more complex when compared to conventional mate-
rials due to different types of coupling produced in these anisotropic
materials.

Laminated composites are subjected to delamination because of
high inter-laminar stresses, impact damage and fabrication defects.
When a structure member delaminates, stresses within the member will
be redistributed which affect the response of the structural. Therefore,
it is necessary to understand and consider these changes in composite
structural design. Yang and Oyadiji [10] presented a solution for de-
tecting delamination in composite structures, using frequency devia-
tions. They studied effects of delamination due to concentrated mass
loading with respect to modal frequency variations in composite beams,
and consequently employed frequency curves as NDT tool for delami-
nation identification and localization. Kharghani and Soares [11] stu-
died behavior of laminated composite plates with embedded delami-
nation using a Layerwise Higher Order Shear Deformation Theory. They
also predicted the initiation of debonding in opening and sliding frac-
ture modes. Marjanovic et al. [12] used a simple and efficient algorithm

to track a moving delamination front of arbitrary shape, using a lami-
nated finite plate element model in conjunction with the Virtual Crack
Closure Technique (VCCT). Shokrieh et al. [13] presented a modified
model for simulation of mode I delamination growth in laminated
composite materials. Aslan and Daricik [14] investigated the effect of
multiple delaminations on the compressive, tensile and flexural
strength of E-glass/epoxy composites and evaluated their effects on the
first critical buckling load.

Due to extensive use of composites in aerospace structures, vibra-
tion, buckling and flutter instability of these materials are very im-
portant in design of structures. Jafari-Talookolaei et al. [15] presented
analytical and finite element solutions for free vibration analysis of
delaminated composite curved beams by taking into account the effects
of shear deformation, rotary inertia, deepness terms and material cou-
pling. Della [16] developed an analytical solution to study the free vi-
bration of composite beams with two overlapping delamination under
axial compressive load. His results show a linear relation between the
square of the constrained mode and free mode frequencies of the simply
supported beam with the axial compressive load. Park et al. [17] stu-
died the free vibration of laminated composite skew plates with dela-
mination based on the high-order shear deformation theory. Liu and
Shu [18] developed an analytical solution to study free vibration of
rotating Timoshenko beams with multiple delaminations. They also
studied the influences of Timoshenko effect and rotating speed on vi-
bration of delaminated beams. Kharazi et al. [19] presented an analy-
tical method to study the buckling behavior of the composite plates
with through-the-width delaminations by different plate theories.
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Ovesy et al. [20] studied the effect of through-the-width delamination
on the dynamic buckling behavior of composite plates using semi-
analytical finite strip method. Sahoo et al. [21] investigated the free
vibration, bending and transient responses of delaminated composite
plates using higher-order shear deformation theory in conjunction with
finite element steps. They obtained final form of the governing equa-
tions of the bending and free vibration response using variational
method and the classical Hamilton’s principle. Tafreshi [22] presented
a finite element method to analyze instability of delaminated composite
cylindrical shells subjected to pure bending and also combined bending
and axial compression. Rezaeepazhand and Wisnom [23] investigated
the applicability of scaled models for predicting the buckling behavior
of delaminated composite beams and studied the limitations and ac-
ceptable intervals of all parameters and corresponding scale factors.

Wang et al. [24] studied stability of an isotropic delaminated beam
subjected to a follower force. They also investigated the effect of the
location and length of the delamination on the buckling and flutter
instability of the beam. Yazdi and Rezaeepazhand [25,26] used simi-
litude theory and investigated flutter pressure of a delaminated com-
posite beam-plate subjected to supersonic flow. Moreover, Yazdi [27]
investigated flutter instability of delaminated cross-ply composite shells
and panels when subjected to supersonic flow parallel to its length
edge.

Dynamic stability analysis of delaminated composite structures is
very complex and there is no exact solution for many of these types of
problems, therefore researchers usually use numerical methods to solve
these problems. In this paper, a simple analytical solution is presented
to find flutter load of a laminated composite beam with a single dela-
mination when subjected to a concentrated follower force. The length
to thickness ratio of the beam is high and so Euler-Bernoulli beam
theory can be used. Furthermore, all deflections are small and CLT is
used for composite analysis. First, using Euler-Bernoulli beam theory
and CLT, stability equation of the beam is derived and solved analyti-
cally for free vibration, buckling and flutter instability. Then results for
free vibration and buckling are compared with previous investigations.
Moreover, the effect of delamination length and location and stacking
sequences of laminates on the flutter load of the laminated beam is
investigated.

2. Governing equations

Fig. 1 shows one-dimensional model of a laminated composite beam
with a delamination of length a. Length, thickness and width of the
beam areL, h and b respectively. Beam is subjected to a concentrated
follower load, P. The delamination divides the beam into four sub-
beams with length = −l i, 1 4i as it is shown in Fig. 1. = −h i, 1 4i are
thicknesses of subbeams, which for subbeams 1 and 4 are equal to h.
Each subbeam is subjected to load = −P i, 1 4i .

LetW x t( , )i i be the small deflection for each subbeams at any point of
them, fi the deflection of each subbeams at its end and φi the angle of
rotation of each subbeam's end section. Within the framework of usual
assumptions of the elementary theory of bending, the equation of small
deflection of each subbeams is of the form

− = − − − + = −M P f W P φ l x L i( ) ( ) , 1 4xx
i
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In Eq. (1) Mxx
i is bending moment of each subbeams in x direction

and Lj
i is the bending moment produced by the action of inertia forces

(in the sense of d′Alembert principle) of each subbeams. Differentiating
Eq. (1) twice and noting that
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Eq. (3) is obtained where ρi is the mass per unit length of each
subbeams.
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According to CLT in-plane forces and moments for a laminated
composite beam are in the form of Eqs. (4) and (5).

̃= + ∼∼ A BN ε κ0 0 (4)

̃= + ∼∼ B DM ε κ0 0 (5)

where Ni and Mi are in-plane forces and moments respectively, εi
0 are

the mid-plane strains and κi
0 are mid-plane curvatures. A, B and D are

extensional, extensional-bending coupling and bending stiffness ma-
trices respectively, which calculated in unit length. Since Pi is the only
axial load in each subbeams, it can be assumed that Nxx

i is the only non-
zero in-plane force for each subbeams. Furthermore, because length to
thickness and length to width ratios of the beam are high, Mxy

i and Myy
i

are very small, and so negligible. Also it is assumed that there is no
contact between the delamination surfaces so they deform freely
without any touching and have different transverse deformation.
Therefore, the coupling only occurs at the crack tips. Using these as-
sumptions and mid-plane strains and curvatures definitions, similar to
[28] Eqs. (6)–(9) are obtained for each subbeams.
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Using Eqs. (7) and (8), Eqs. (6) and (9) can be rewritten only in
terms of Ui and Wi and simplified in the form of Eqs. (10) and (11).
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2 (15)Fig. 1. Laminated composite beam with a single delamination.
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