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A B S T R A C T

This study presents a finite element (FE) formulation based on four-variable refined plate theory for a bending
analysis of functionally graded (FG) plates integrated with a piezoelectric fiber reinforced composite (PFRC)
actuator under electrical and mechanical loadings. The four-variable refined plate theory accounts for a para-
bolic variation of the transverse shear stresses across the plate thickness, which satisfies zero traction conditions
on the plate free surfaces. The principle of minimum potential energy is used to derive the weak form of gov-
erning equations, and a 4-node nonconforming rectangular plate element with eight degrees of freedom (DoFs)
per node is introduced for discretizing the domain of the bending variables. Some benchmark problems are also
solved using the developed MATLAB code. A comparison of the results of the obtained displacements and
stresses with the exact and other numerical solutions shows good agreement, thereby proving the simplicity and
efficiency of the present finite element (FE) solutions. In addition, the effects of several parameters on the results,
including the thickness ratio, Young’s modulus ratio, the types of boundary conditions, and the distribution and
amount of loadings, are investigated.

1. Introduction

In recent years, functionally graded materials (FGMs), as a new class
of composites, have been developed. They have gained considerable
attention among other composites owing to their superior features. The
material properties of FGMs show a smooth and continuous change
from one surface to another in one or more directions, eliminating the
stress concentration found in laminated composites. This property is
achieved in plate and shell structures usually by gradually changing the
composition of the constituent materials through the thickness. The
idea behind the use of FGMs was first proposed by material scientists in
the Sendai area of Japan [1]. FGMs are now widely used in many
structural applications, such as aerospace, nuclear, mechanical, civil,
biomedical, electrical, chemical, and automotive fields. Because of their
widespread applications, FG plates have received significant attention,
and a variety of plate theories such as classical plate theory (CPT), first-
order shear deformation theories (FSDTs), and higher-order shear de-
formation theories (HSDTs) have been employed for modeling these
structures.

CPT is the simplest plate theory, and does not take into account the
shear deformation effects. As such, it only gives acceptable results for a
static analysis of thin plates. Owing to the deficiencies of CPT, FSDTs
have been introduced, in which the transverse shear stress is assumed to

be constant through the plate thickness. These theories cannot satisfy
the zero traction conditions on free surfaces, and also require a shear
correction factor in their formulations. The accuracy of these theories
depends on the determination of a proper value for the shear correction
factor. To overcome the limitations of FSDTs, various HSDTs have been
proposed, such as the trigonometric shear deformation theory, the hy-
perbolic shear deformation theory, and the two-variable refined plate
theory. The two-variable plate theory is simple and efficient. It contains
parabolic transverse shear stresses across the plate thickness, satisfying
zero traction conditions on the free surfaces of the plate. This theory
was first presented by Shimpi [2] for a bending analysis of isotropic
plates, and was then extended to orthotropic and laminated plates by
Shimpi and Patel [3], Thai and Kim [4], and Kim et al. [5]. Free vi-
bration and buckling analyses of plates were conducted by Shimpi and
Patel [6] and Kim et al. [7], respectively. Mechab et al. [8] employed
this theory for a bending analysis of FG plates. Rouzegar and Abdoli
presented finite element formulations based on a two-variable refined
plate theory for bending [9], free vibration [10], and buckling [11]
analyses of isotropic and orthotropic plates. In the two-variable refined
plate theory, the middle surface of the plate is assumed to be un-
strained, and only the bending effects are considered.

In the four-variable refined plate theory, two other parameters as-
sociated with the in-plane displacements of the plate middle surface are
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added. A static analysis of FG plates using the four-variable refined
plate theory was presented by Mechab et al. [12] and Thai and Choi
[13].

Many investigations have been focused on the analysis of different
responses of plate structures bonded with piezoelectric layers owing to
the superior piezoelectric properties such as a quick response, large
power generation, operational ability at very low temperatures, and
vacuum capability. One of the first investigations on piezoelectric plates
was conducted by Tiersten and Mindlin [14]. The governing equations
for a piezoelectric layer were introduced by Tiersten [15]. Several
piezoelectric materials such as PZT and PVDF are available; however,
these materials have certain limitations such as low piezoelectric con-
stants, shape control, and high specific acoustic impedance. Because of
these shortcomings, a new material called a piezoelectric fiber-re-
inforced composite (PFRC) has been introduced [16]. Mallik and Ray
[17] applied the notion of unidirectional piezoelectric fiber reinforced
composite materials and presented their effective properties.

Ray and Sachade [18] conducted a static analysis of FG plates with a
piezoelectric layer using the finite element method (FEM) and first-
order shear deformation theory. Ray and Sachade [19] presented an
exact solution for the problem of an FG plate with a layer of piezo-
electric fiber-reinforced composite. Panda and Ray [20] presented a
nonlinear finite element analysis of FG plates integrated with patches of
PFRC. Shiyekar and Kant [21] developed an electromechanical higher-
order analytical model for a flexure analysis of FG plates integrated
with PFRC layers. Behjat et al. [22] conducted static and dynamic
analyses of FG piezoelectric plates under mechanical and electrical
loadings using FEM and FSDT. Rouzegar and Abad presented an ana-
lytical solution for the flexure of composite plates [23] and the free
vibration of FG plates [24] integrated with piezoelectric layers using
the four-variable refined plate theory.

In this study, a finite element formulation based on the four-variable
refined plate theory was developed for a static analysis of FG plates
integrated with a layer of a PFRC actuator. The present plate theory is
an efficient HSDT, and has a simple formulation in comparison to
common shear deformation plate theories. In this theory, a parabolic
variation of the transverse shear strain and stress across the plate
thickness is considered, and zero traction conditions are satisfied on the
plate surfaces. Therefore, there is no need for a shear correction factor
in the formulation. The piezoelectric layer acts as an actuator, and the
plate is subjected to electrical and mechanical loadings. A 4-node
nonconforming rectangular plate element with eight degrees of
freedom (DoFs) per node is introduced for discretizing the domain of
the bending variables. The presented approach was validated by solving
of some benchmark problems and comparing the results with the exact
and other FE solutions. The effects of different parameters such as the
thickness ratio, Young’s modulus ratio, various types of boundary
conditions, and the distribution and amount of loadings are also ex-
amined.

2. Formulation

Fig. 1 shows a rectangular smart plate of length a and width b,
which contains an FG substrate and a layer of PFRC attached at the top
surface of the substrate. The thickness of the FG substrate is h and the
thickness of piezoelectric layer is hp, which is small compared with h.
The origin of the right-handed Cartesian coordinate system (x, y, z) is
located at the corner of the middle plane of the FG substrate. The hybrid
plate is subjected to both electrical and mechanical loadings.

2.1. Displacement and strain

According to the four-variable refined plate theory, the displace-
ment components u, v, and w in the x, y, and z directions are introduced
below [23]:
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where u0 and v0 are the in-plane displacements of the mid-plane in the x
and y directions, and wb and ws are the bending and shear components
of the transverse displacements, respectively. The strain-displacement
relations are given as
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where εx and εy are normal in-plane strains along the x and y axes, εxy is
the in-plane shear strain, and γxz and γyz are the transverse shear
strains, respectively, i.e.,
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where ht is the total thickness of the substrate and piezoelectric layer.

2.2. Constitutive equation

The FG material considered in this study is isotropic at any point,
and the Young’s modulus changes exponentially through the thickness
according to the following exponential relation [25]:

= +E E e ,λ z h
0

( 2 ) (4)

where E0 is the Young’s modulus of the bottom surface of the FG plate,
and λ is a parameter describing the inhomogeneity of the FG plate, i.e.,

Fig. 1. Geometry of the rectangular FG substrate attached with a PFRC actuator at the
top.
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