
Contents lists available at ScienceDirect

Thin-Walled Structures

journal homepage: www.elsevier.com/locate/tws

Full length article

Lateral-torsional buckling of fixed circular arches having a thin-walled
section under a central concentrated load

Airong Liua, Hanwen Lua, Jiyang Fua, Yong-Lin Pib,⁎

a Guangzhou University-Tamkang University Joint Research Centre for Engineering Structure Disaster Prevention and Control, Guangzhou University, Guangzhou, China
b Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, The University of New South Wales, UNSW Sydney, NSW, Australia

A R T I C L E I N F O

Keywords:
Arch
Axial compression
Bending
Fixed
Lateral-torsional buckling
Rayleigh-Ritz method
Central concentrated load

A B S T R A C T

When a thin-walled section arch is subjected to an in-plane central concentrated load, the load produces
combined nonuniform axial compressive and bending actions, which increase with an increase of the central
load and may reach the values, at which the arch suddenly deflects laterally and twists out of the plane of
loading, and fails in a lateral-torsional buckling mode. The elastic lateral-torsional buckling of fixed circular
arches under a central concentrated load has been a difficult problem to be solved, which is investigated in this
paper. Accurate prebuckling analyses for axial compressive and bending actions produced by the central load are
carried out. The analytical solution for the elastic lateral-torsional buckling load is derived using the principle of
stationary potential energy in conjunction with the Rayleigh-Ritz method. The analytical solutions for the
prebuckling axial compressive and bending actions and for the elastic lateral-torsional buckling load are
compared with independent finite element results. It is found that they agree with each other very well, which
validate the analytical solutions. In addition, the effects of load height, slenderness and in-plane boundary
condition on the lateral-torsional buckling load are investigated. It is found that changes of the slenderness ratio,
load height and in-plane boundary conditions have significant effects on the lateral-torsional buckling resistance
of arches. This paper provides structural researchers and designers with a deep insight and useful analytical
solutions for the lateral-torsional buckling of circular arches, and establishes a sound basis for investigations on
the lateral-torsional strengths of fixed circular arches in the future.

1. Introduction

The elastic lateral-torsional buckling of pin-ended circular arches
that are subjected to nominal in-plane uniform compression or bending
moment has been studied extensively, and analytical solutions for the
buckling loads have been obtained by a number of researchers [1–13].
Although the lateral-torsional buckling of arches is more complicated
than the flexural or torsional buckling of columns and the lateral-
torsional buckling of beams due to couplings between the lateral and
torsional buckling deformations, a trivial prebuckling stress state was
assumed in classical lateral-torsional buckling analyses for such arches,
which makes the prebuckling analysis relatively simple [1–13]. In
classical analyses, uniform compression in a circular arch is produced
by a uniform radial load, while uniform bending is produced by
applying equal and opposite bending moment to both ends of a simply
supported arch. However, Pi et al. [14–18] found that the stress state in
arches subjected to a uniform radial load q is non-trivial. Although the
uniform radial load produces a uniform compressive force in a circular
arch, its magnitude in shallow arches is much smaller than the trivial

value N=qR (R is the radius of the arch) and the bending moment in
shallow arches is substantial. When a circular arch is subjected to a
central concentrated load, the axial compressive force and bending
moment in the arch produced by the load are non-uniform with much
more complicated distribution patterns, which makes its lateral-tor-
sional buckling analysis difficult [14–18]. Pi et al. [14–18] investigated
the lateral-torsional buckling of out-of-plane pin-ended circular arches
that are subjected to a uniform radial load or a central concentrated
load and derived an analytical solution for the lateral-torsional buckling
load. However, in many cases of engineering practice, both ends of
arches are out-of-plane fixed. Lateral-torsional buckling of fixed circular
arches under nominal axial compression has been studied in [19–22] by
assuming that prebuckling stress state is trivial. Fixed arches under a
central concentrated load are subjected to combined axial compressive
and bending actions and so the prebuckling stress state is expected to be
quite complicated, which have to be considered in the lateral-torsional
buckling analysis of fixed arches. In addition, the lateral-torsional
buckling mode shape of fixed arches under a central concentrated load
is much complicated than that of out-of-plane pin-ended arches. Hence,

http://dx.doi.org/10.1016/j.tws.2017.05.002
Received 13 December 2016; Received in revised form 2 May 2017; Accepted 2 May 2017

⁎ Corresponding author.
E-mail address: y.pi@unsw.edu.au (Y.-L. Pi).

Thin-Walled Structures 118 (2017) 46–55

0263-8231/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/02638231
http://www.elsevier.com/locate/tws
http://dx.doi.org/10.1016/j.tws.2017.05.002
http://dx.doi.org/10.1016/j.tws.2017.05.002
mailto:y.pi@unsw.edu.au
http://dx.doi.org/10.1016/j.tws.2017.05.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tws.2017.05.002&domain=pdf


it is difficult to obtain analytical solutions for the lateral-torsional
buckling load of fixed arches under a central concentrated load and
recourse to numerical methods such as the finite element methods may
be made to compute their lateral-torsional buckling loads [23–27].
Analytical solutions for the elastic lateral-torsional buckling load of an
arch having out-of-plane fixed boundary condition under central
concentrated load and comprehensive investigation of the correspond-
ing lateral-torsional buckling behaviour do not appear to be reported in
the literature.

The purpose of this paper is to investigate the elastic lateral-
torsional buckling behaviour of fixed circular arches having a thin-
walled cross-section under an in-plane central concentrated load.
Accurate prebuckling analyses are conducted to determine the distribu-
tions of prebuckling axial compressive and bending actions. The correct
lateral-torsional buckling mode shape is explored. With the accurate
axial compressive and bending actions and the correct lateral-torsional
buckling mode shape, the analytical solution for the elastic lateral-
torsional buckling load of fixed circular arches is derived. The effects of
the in-plane boundary conditions, load height, cross-section and
slenderness ratio on the lateral-torsional buckling of fixed arches are
also investigated. All analytical solutions are verified by independent
finite element results. This paper provides structural researchers and
designers with a deep insight and useful analytical solutions for lateral-
torsional buckling of circular arches.

2. Prebuckling analysis

The fixed circular arch investigated in this paper is shown in Fig. 1,
where R is the radius, S the length, L the span, H the rise, and 2α the
included angle of the arch. The lateral, radial and tangential displace-
ments of the arch axis in the direction x, y, and z are denoted by u(φ), v
(φ), and w(φ), and the twist torsion of the cross-section by θ(φ), where
φ is the angular coordinate.

Before tackling the lateral-torsional buckling analysis of a fixed
circular arch, it is important that prebuckling axial compressive and
bending actions in the arch produced by the in-plane central concen-
trated load (Fig. 1) are correctly determined by an accurate analysis.
The differential equations of in-plane equilibrium can be derived by
applying the principle of stationary potential energy to the arch and
load system. The total potential energy of the system can be expressed
as [16,17]
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where ε is the longitudinal normal strain, E Young's modulus, A the area
of the cross-section, v v R= /∼ , w w R= /∼ , v and w the radial and axial
displacements respectively, ()′=d()/dφ, Q the central concentrated
load, and δD(φ) the Dirac function defined by
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The linear longitudinal normal strain ε due to in-plane deformations
is sufficiently accurate for the prebuckling analysis and has been
obtained as [14–18]
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Substituting Eq. (3) into Eq. (1) and applying the principle of
stationary potential energy, which requires that the first variation of the
total potential energy of the system vanishes, lead to
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where Ix is the second moment of area of the cross-section about its
major principal axis ox (Fig. 1).

Integrating Eq. (4) by parts obtains

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭
⎡
⎣⎢

⎤
⎦⎥

∫δΠ EI
R

v w AER w v ϕ Q R y δv

EI
R

v w AER w v δw dϕ

EI
R

v w AER w v δw

EI
R

v w δv v w δv

= ( + ‴) − ( ′ − ) − δ ( ) ( + )

− ( ‴ + ″) + ( ″ − ′)

+ ( ″ + ′) + ( ′ − )

+ [( ″ + ′) ′ − ( ‴ + ″) ] = 0

∼ ∼ ∼

∼ ∼

∼ ∼

∼ ∼ ∼ ∼

∼ ∼

∼ ∼ ∼

∼ ∼

∼ ∼

α

α x iv
q

x

x

α

α

x

α

α

− D

−

−

(5)

The last two terms of Eq. (5) vanish at both ends of the in-plane
fixed and pin-ended arches. Hence, for Eq. (5) to be held for arbitrary
infinitesimal variations δv∼ and δw∼, the terms in the brackets of the
integration should vanish, which lead to the differential equations of
equilibrium for the in-plane deformations of arches as

EI
R

v w AER w v φ Q R y( + ‴) − ( ′ − ) − δ ( ) ( + ) = 0∼ ∼∼ ∼x iv
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in the radial direction, and

EI
R

v w AER w v( ‴ + ″) + ( ″ − ′) = 0∼ ∼∼ ∼x
(7)

in the axial direction.
For fixed arches, the essential kinematic boundary conditions

v w v w φ α′ + = 0, = 0, = 0 at = ±∼ ∼∼ ∼ (8)

need to be satisfied.
For in-plane pin-ended arches, the essential kinematic boundary

Fig. 1. Lateral–torsional buckling.
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