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A B S T R A C T

In this work, we present an approach to analyze the nonlinear dynamics of shell structures, which combines a
mixed finite element formulation and a robust integration scheme. The structure is spatially discretized with
extensible-director-based solid-degenerate shells. The semi-discrete equations are temporally discretized with a
momentum-preserving, energy-preserving/decaying method, which allows to mitigate the effects due to
unresolved high-frequency content. Additionally, kinematic constraints are employed to render structural
junctions. Finally, the method, which can be used to analyze blades of wind turbines or wings of airplanes
effectively, is tested and its capabilities are illustrated by means of examples.

1. Introduction

The complexity of current and new shell structures in combination
with the increased computation capacity encouraged the development
and application of fully nonlinear shell formulations. In this context,
time-domain analysis involving large displacements, large rotations and
large strains due to dynamic loads plays a major role. The discrete
equations of shells are in fact very stiff and therefore, the calculation of
long-term response could be very problematic, even for well-established
commercial codes. Achieving robustness requires the development of
new methods that must annihilate the unresolved high-frequency
content, warranting evenly the preservation of the underlying physics.
Certainly, the accomplishment of these features is very challenging.

Dvorkin and Bathe [1] developed a four-node shell element for
general nonlinear analysis, which is applicable to the analysis of thin
and thick shells. Bathe and Dvorkin [2] discussed the requirements for
linear and nonlinear analysis. Büchter and Ramm [3] addressed the
controversy between solid-degenerate approaches and shell theories.
Bütcher et al. [4] enabled the introduction of unmodified three-
dimensional constitutive laws by means of the enhanced assumed
strain method proposed by Simo and Rifai [5]. Simo and Tarnow [6,7]
developed a time integration scheme for the dynamics of elastic solids
and shells, which preserves, independently of the time step size, the
linear momentum, the angular momentum and the total energy. Choi
and Paik [8] presented the development of a four-node shell element for
the analysis of structures undergoing large deformations. Betsch and
Stein [9,10] developed a four-node shell element that incorporates
unmodified three-dimensional constitutive models. This element was

improved by means of the enhanced assumed strain method proposed
by Simo and Armero [11]. Bischoff and Ramm [12] formulated a
geometrically nonlinear version of the enhanced assumed strain
approach in terms of Green-Lagrange strains. Sansour et al. [13]
combined a geometric exact shell theory and an integration scheme
that preserves the linear momentum, the angular momentum and the
total energy. Kuhl and Ramm [14] developed a generalization of the
energy-momentum method developed within the framework of the
generalized α method. Armero and Romero [15,16] developed a family
of schemes for nonlinear three-dimensional elastodynamics that ex-
hibits controllable numerical dissipation in the high-frequency range.
For a fixed and finite time step, the method produces a correct picture
of the phase space even in the presence of dissipation. Sansour et al. [17]
dealt with a dynamic formulation of shells and the development of a
robust energy-momentum integration scheme. Romero and Armero [18]
extended the previously introduced method for the dynamics of
geometrically exact shells. Proofs of the numerical properties in the
full nonlinear range were also provided. Bauchau et al. [19] developed
energy-preserving/decaying schemes for the simulation of multibody
systems including shell components. Vu-Quoc and Tan [20] developed
an eight-node solid-degenerate shell element and tested it with several
integration methods. Sansour et al. [21] modified an existent method to
deal with material nonlinearities. Ozkul [22] presented a finite element
for dynamic analysis of shells of general shape. Ziemčík [23] presented
a four-node shell element to analyze lightweight smart structures.
Leyendecker et al. [24] extended a framework for the computational
treatment of rigid bodies and nonlinear beams to the realm of nonlinear
shells. Vaziri [25] studied the response of shell structures under large
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deformations and presented a review of the current state-of-the-art with
practical suggestions. Carrera et al. [26] considered the mixed inter-
polation of tensorial components, which was extended to model shells
with variable kinematics. Wu [27] described the nonlinear dynamic
behavior of shell structures by means of a vector form intrinsic
formulation. Ahmed and Sluys [28] presented a three-dimensional shell
element for the dynamic analysis of laminated composites. Pietraszkie-
wicz and Konopińska [29] reviewed different theoretical, numerical,
and experimental approaches to model, analyze and design compound
shell structures with junctions. Reinoso and Blázquez [30] developed an
eight-node solid-degenerate shell element, which was reformulated in
the context of composite structures. Recently, Caliri et al. [31] pre-
sented a very detailed literature review on plate and shell theories for
composite structures with highlights to the finite element method.

In this work, we present an approach to analyze the nonlinear
dynamics of shell structures, which relies on the combination of a
mixed finite element formulation and a robust integration scheme that
is presented in a differential-algebraic setting. The structure is spatially
discretized with extensible-director-based solid-degenerate shells. The
shear locking and the artificial thickness strains are cured by means of
the assumed natural strain method, but the enhancement of the strain
field in the thickness direction and the cure of the membrane locking
are achieved by means of the enhanced assumed strain method. This
director-based approach allows to consider unmodified three-dimen-
sional constitutive laws by only improving the director field. Due to the
adopted kinematic description, the treatment of folded shells is very
simple and the combination with rigid bodies and beams is straightfor-
ward (this is valid for rotationless frameworks). Similar approaches for
eight-node solid-degenerate shells would require to reparametrize the
director field in terms of the upper and lower displacement fields,
which would be surely effective, but certainly more elaborate.
However, objective and comprehensive comparisons between the
four-node extensible-director-based solid-degenerate shell and the
eight-node displacement-based solid degenerate shell are not part of
this work. The resulting semi-discrete equations are temporally dis-
cretized by means of a momentum-preserving, energy-preserving/
decaying method, which allows to mitigate the undesirable effect due
to unresolved high-frequency content providing robustness without
destroying the precision of the solution. Finally, some interesting
constraints to render more complicated structures by means of junc-
tions are introduced, and its null-space treatment is briefly described. In
few words, from a methodological point of view, the novelty of this
work is the combination of a mixed finite element for shells, the time
integration with a momentum-preserving, energy-preserving/decaying
method and the null-space projection method into a single common
unifying framework, which may be used very effectively to analyze
blades of wind turbines or wings of airplanes. To our best knowledge,
there is not a single work, in which all these three topics are combined
with a similar setting in the context of shell structures.

The remaining is organized as follows: Section 2 presents the
adopted mechanical framework, comprising a general description, the
spatial discretization that relies on a mixed formulation, the temporal
discretization that relies on a robust scheme, the treatment of various
interesting constraints and the presentation of the discrete equations. In
Section 3, we present five examples taken from literature, which were
chosen to show the potentialities and capabilities of the exposed ideas.
Finally, concluding remarks and future work are given in the Section 4.

2. Mechanical framework

In this section, we present the necessary mathematical tools to deal,
from a purely mechanical point of view, with shell structures. First, we
roughly outline the fundamentals that are needed to establish a starting
point. Second, we introduce the shell kinematics and the spatial
discretization based on a mixed finite element formulation. Third, we
introduce the temporal discretization starting from the energy-momen-

tum-conserving algorithm and the modifications needed to build a
momentum-preserving, energy-preserving/decaying algorithm. Fourth,
we provide a brief exposition of some interesting constraints, which are
used to render more complicated structures. And lastly, we present the
governing equations for the fully discretized problem in their final
implementation form.

2.1. Generalities

Let us assume a continuum body characterized by a chosen
reference set denoted by B0, this is an open set of 3, whose
configuration and velocity are described at time t by the vectors

X x t( ) ∈ ⊆t
3 and V v t( ) ∈ ⊆t

3, respectively. In addition, let us
assume that the body is subjected to a finite-dimensional set of
constraints h x 0( ) = ∈ n, with n ∈ , that only accounts for integrable
restrictions. The dynamic behavior of the flexible system within the
bounded time interval t t[ , ] ⊂1 2 0

+ can be formulated with the Hamilton
principle as
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where Sδ is merely the infinitesimal increment of the action functional,
which may be not an actual variation due to the presence of non-
conservative external fields, and ·,· is an appropriate dual pairing.

Xxδ T∈ x t t( ) and Vvδ T∈ v t t( ) are admissible variations of the configura-
tion and velocity vectors, respectively. The displacement-based mo-
mentum density l x( ) and the velocity-based momentum density l v( )
map elements of VTv t t( ) to elements of . The time rate of the velocity-
based momentum density l v˙( ), the internal force density f x S( , )int ♯ and
the external force density f x( )ext map elements of XTx t t( ) to elements of
. X H T: × →x

n
t t( ) is the Jacobean matrix of h x( ), λ t t: [ , ] → n

1 2
belongs to the space of curves with no boundary conditions, the well-
known Lagrange's multipliers, and λδ represents an admissible variation
of the multipliers. The strain EE E∈ ≔ { ∈♭ ♭

X X E ϕ ϕ G x G xT T t* × * 2 = [ ∘( ) ]* [ ( )] − [ (0)]}x x t0 0( ) 0 ( ) 0 ♭ 0
−1 is the displace-

ment-based part of the Green-Lagrange strain tensor, in which G x[ (0)]
is the metric tensor in the original configuration, G x t[ ( )] is the metric
tensor in the current configuration and ϕ ϕ[ ∘( ) ]*(·)t 0

−1 denotes the
pullback from the current configuration to the original one by means
of the regular motion ϕ ϕ∘( )t 0

−1. The strain E ∈͠ ♭

E X X B
B

 ∫E E E ST T d0≔ { ∈ * × * skew( ) = , , = 0}͠ ͠ ͠x x0 0♭ ( ) 0 ( ) 0 ♭ ♭
♯

0
is an

enhancement and EEδ T∈͠ E t t♭ ( )͠ ♭ represents an admissible variation,
assuming that the strain space possesses a manifold structure. From
the linear combination of both parts, i.e. E E+ ͠♭ ♭, results the Green-
Lagrange strain tensor E♭, which is energetically conjugated by an
appropriate stress definition S XS St T( ) ∈ ≔ { ∈ ×x 0

♯ ♯
( ) 0

X S ET Ψ= ∂ ( )}x E0( ) 0
♯

♭♭ , the second Piola-Kirchhoff stress tensor, and
EΨ ( )♭ is the material law. The symbol ♭(♯) indicates that a second-rank

tensor is doubly covariant (contravariant).

2.2. Shell kinematics and spatial discretization

The position at time t of any given point belonging to the shell can
be written as

x θ x dt θ θ t θ θ θ t( ; ) = ( , ; ) + ϑ
2

( , ; ),1 2 3 1 2
(2)

in which x ∈ 3 is the position vector of the middle surface, ϑ
represents the thickness of the shell and d is an extensible director,
which admits multiplicative decomposition, i.e. d dd= with d ∈ +

and d S∈ 2. θ θ θ θ= ( , , )1 2 3 is a set of parameters chosen in the way
that θ θ θ= ( , , 0)1 2 describes the middle surface and x x θ t= ( ; ) is the
given parameterization rule in time and space, see Fig. 1. For
instance, we can choose θ to span the domain □ such as

C.G. Gebhardt, R. Rolfes Thin-Walled Structures 118 (2017) 56–72

57



Download English Version:

https://daneshyari.com/en/article/4928397

Download Persian Version:

https://daneshyari.com/article/4928397

Daneshyari.com

https://daneshyari.com/en/article/4928397
https://daneshyari.com/article/4928397
https://daneshyari.com

