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A B S T R A C T

The paper introduces a generalisation of the Ayrton-Perry formula for thin-walled members, covering uncoupled
and coupled instabilities of global, distortional and local type. This semi-analytical solution is based on the
Generalised Beam Theory (GBT) and it provides the maximum carrying capacity in elastic domain for simply-
supported thin-walled members with initial geometric imperfections, under various loading conditions. Direct
generalised Ayrton-Perry formulae are developed for the buckling described by one or a combination of two pure
imperfection/deformation modes; for more than two coupled modes, a simple incremental procedure is
provided.

1. Introduction

Despite its many simplifying assumptions, the Ayrton-Perry formula
(APF) is a very popular method to find the buckling resistance of steel
members, due to its clear mechanical background, simplicity and
flexibility. Therefore it has been introduced in many modern design
standards as Eurocode 3 Chapter 1-1 (EC3) [1] for basic cases as the
flexural buckling of columns, and the lateral-torsional buckling of beam
and beams-columns, all of them belonging to the global buckling type.
The flexural buckling of columns is the only case with a strong
theoretical and experimental background [2–6]. Regarding the lat-
eral-torsional buckling, the design curves are based mainly on numer-
ical simulations [7], since the experimental testing is difficult to
perform (few results have been reported [8]) and the analytical
description is still under investigation [9,10]. Even if the classical
APF works in elastic domain and only for global buckling modes,
successful attempts have been made to adapt it for the plastic–elastic
interactive buckling introducing the local failure modes into the elastic
global behaviour of the member [11,12].

The goal of the research presented in this paper is to create a
Generalised APF (GAPF) working in elastic domain, for all three
buckling types: global, distortional and local. The main instrument
used by the author is the Generalised Beam Theory (GBT). Originally
created by Schardt [13,14] and extensively developed by Camotim,
Silvestre et al. [15–17], GBT is a specialized method capable to perform
a wide variety of structural analyses, the most important being the
study of stability behaviour of thin-walled members. GBT has the ability
to decompose the member buckling deformation into a linear combina-

tion of pure deformation modes, which accounts, at cross-section level,
for both rigid-body (global) motions and in-plane (distortional and
local) deformations. A very important feature of GBT is the unified
formulation for all deformation modes. A conventional GBT analysis
involves two steps: (i) a cross-section analysis leading to the GBT cross-
section deformation modes (the pure modes) and the corresponding
modal mechanical properties and (ii) a member stability analysis to
obtain the critical loading factors and the associated mode shapes (the
amplitude functions). Only the first step is used in this paper, and next,
the GBT cross-section deformation modes together with the correspond-
ing modal mechanical properties are introduced in GAPF. Until now,
promising results were obtained for the buckling of simply-supported
thin-walled members, under axial compression although the theoretical
developments cover any type of constant loading along the bar. The
member deformation and also the initial geometric imperfections are
represented by a single (or a combination of) GBT deformation modes
of global, distortional and local type, and they are introduced by using
pure sinusoidal amplitude functions of the GBT cross-section deforma-
tion modes with arbitrary number of halfwaves along the member.
Since these pure sinusoidal functions satisfy only the simple-support
boundary condition, the proposed procedure is for the time being
limited to simply supported members. For local buckling usually
characterised by a large number of halfwaves along the member, the
influence of different boundary conditions is generally not significant.
For distortional buckling characterised by a much lower number of
halfwaves, the influence could be significant. As for the global buckling,
the classical APF handles different boundary conditions by application
of the well-known effective length factor. General end boundary
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conditions can be represented by specially selected longitudinal ampli-
tude functions, as the ones previously used in connection with the
Finite Strip Method ([18,19]), and this expansion is currently under
work.

No initial stresses are considered. For the time being GAPF covers
one or a combination of two deformation modes; for more than two
coupled modes, a simple numerical incremental procedure is provided.

It is important to underline that the present formulation provides
the carrying capacity of the thin-walled members only in elastic domain,
therefore it does not provide the maximum carrying capacity (the
ultimate load) of the member as the classical APF does in correlation
with the Effective Width Method. In other words the formulation does
not explore the post-buckling strength reserve which is significant for
both distortional and local buckling. The analysis will stop at first yield,
which often is reached by the flexural component of normal long-
itudinal stresses in local buckling, thus ignoring the strength reserve
related with the membrane stress components. The formulation is also
limited to small deformations and linear distribution of the membrane
normal longitudinal stress. Extending the formulation for nonlinear
stress distribution due to local post-buckling is currently under work. A
significant advantage of the proposed semi-analytical formulation over
FEA, besides its speed, is the capability of providing the modal
participation in elastic domain for each pure buckling mode considering
initial geometric imperfection analysis.

2. The original Ayrton-Perry formula – short review

The APF was originally developed for the flexural buckling of elastic
prismatic columns uniformly compressed, having one halfwave sinu-
soidal imperfection shape. The load carrying capacity is given by the
start of yielding at the most compressed fibre [2]. The problem
presented in Fig. 1 is described by the following equilibrium differential
equation:

EIv N v v″ + ( + ) = 00 (1)

where EI is the appropriate lateral stiffness, v(x) and v0(x) are the
lateral displacement and imperfection functions, respectively, N is the
compressive force and d dx( )′ = ( )/ .

Notice that by double derivation, the equation can be written:

EIv N v v+ ( ″ + ″) = 0IV
0 (2)

The functions v(x) and v0(x) are introduced as follows:
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where L is the bar's length, and a, a0, atot are the amplitudes of the
lateral displacement, the initial imperfection and the total lateral
deformation of the longitudinal axis on y direction, respectively. The
total amplitude is found as:
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At midspan, the most compressed fiber reaches the yield stress:
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where A is the cross-section area,W is the elastic sectional modulus and
fy is the yield stress. Introducing the notations σ N A= /b for the
compressive stress from axial loading, Eq. (5) becomes:
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Introducing also the generalised imperfection factor η a A W= /0 and
the elastic critical compressive stress σ N A= /cr cr , the original APF is
obtained:

σ σ f σ σ σ η( − ) ( − ) =cr b y b b cr (7)

Using the EC3 notations [1], the APF can be rewritten as follows:
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where λ f σ= /y cr is the member slenderness, and χ σ f= /b y is the
buckling reduction factor. The solution yields the design buckling
curves, where the generalised imperfection factor was defined by
extensive investigations involving experimental, numerical and prob-
abilistic analyses [6].

3. The Generalised Beam Theory–short review

The local coordinate system x-s-z and the corresponding displace-
ment field u-v-w are shown in Fig. 2 for an arbitrary thin-walled
member.

In classical GBT, one uses the Kirchhoff-Love plate theory, and the
membrane shearing strains together with the transversal extensions are
neglected [13]. According to GBT, any displacement is considered as a
linear combination of m pure deformation modes of global-distortional-
local type, each one expressed as a product of two functions:

Fig. 1. The model of the original APF [9].
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