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A B S T R A C T

The present study sheds light on geometric nonlinear static analysis of prismatic shells using the semi-analytical
finite strip method. A new computational model, which includes a fully nonlinear compound strip with a
longitudinal and transverse stiffener, has been presented. Furthermore, strips with non-uniform characteristics in
the longitudinal direction have been used in nonlinear analysis. This has, to the best knowledge of authors, never
been reported. Also, this paper describes the design and implementation of eighteen ideal boundary conditions
using three different longitudinal and six well-known transverse displacement interpolation functions.

The results of the presented study were obtained using an open-source software and multi-purpose software
Abaqus. Moreover, the accuracy of the applied computational approach has been verified by comparison with
results from the literature. An excellent agreement of displacement fields is achieved for large deflection analyses
of plates with a hole and stiffeners as well as for shells with a stepped thickness in the longitudinal direction.
Additionally, results from post-buckling analyses of thin-walled structures, a snap-through and snap-back
behavior of shallow shells, are matched. The work presented here has profound implications for future studies of
the finite strip deployment.

1. Introduction

Prismatic shells are architecturally impressive and increasing in
popularity. They appear as load-bearing components in diverse en-
gineering systems or in nature forms and represent a broad class of
engineering structures such as plates, walls, orthotropic plates, cylind-
rical shells, folded plates, thin-walled girders, etc. They are structures
with zero curvature in the longitudinal direction while a cross-section
in the plane perpendicular to the longitudinal direction is polygonal or
curved with a high slenderness ratio. As a consequence, a high
efficiency in shells design can be obtained. However, those structures
have a nearly chaotic and complex behavior which exceeds limits of
linearity. Consequently, an advanced computational approach, includ-
ing the material and geometric nonlinearities, is behooved. Therefore, it
is of utmost importance to know a specific response of those sensitive
structures. Although those nonlinearities generally occur simulta-
neously coupled, for certain classes of prismatic shells geometric

nonlinear effects precede material ones, which justifies analysis of
geometric nonlinearity separately.

Analysis of prismatic structures is a highly specialized discipline in
modern structural engineering. The most general method for solving
those structures is the finite element method (FEM), but for some
specific geometries and loads, the finite strip method (FSM) proves
more efficient. In this paper, we are mainly interested in the nonlinear
static analysis using the FSM, which will be juxtaposed with the FEM
due to its wide acceptance and versatility. A more detailed review of the
FEM is beyond the scope of this paper but it is noted, however, that
some of the basics are given in [1,2], while the authors [3,4] show
recent trends in the FEM and its integration with the computer aided
designs using the isogeometric approach.

The FSM was pioneered by Cheung [5]. The main idea is to
approximate the displacement field in the longitudinal direction with
a series of continuous functions and to discretize in the transverse
direction, which leads to a set of finite strips connected at nodal lines.
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This approach classifies the method as semi-analytical. If free vibration
eigenfunctions are used for the approximation, the equations of balance
can be uncoupled for some cases due to their orthogonality. Theoretical
foundations of the FSM are presented in [6–8]. It is already known that
the FSM is recognized as an alternative to the FEM for regular
geometries and applied in many areas of structural analyses and
designs. Linear static and dynamic analyses, including free vibration
and bifurcation problems, have been studied in detail by [9–11] and
[12], producing a continuous and significant enhancement of the FSM.
Buckling analyses are of particular interest here since it is the first step
for an imperfection sensitive nonlinear analysis. Recent contributions
are related to the development of the constrained FSM [13,14]. A
significant effort is devoted to nonlinear analysis and the main
contributions are briefly presented.

One of the first works in the nonlinear analysis using the FSM is [15]
and the post-locally-buckled behavior of prismatic plate structures due
to a uniform end compression (modeled as a uniform end shortening)
has been analyzed. Due to the incompatibility of functions at corners of
a structure, the approach is limited to local analyses. A non-uniform end
compression is introduced in [16], while the first investigation of local
and global buckling mode interactions of thin-walled beams is shown in
[17]. Membrane displacements are decomposed into a linear (pre-
buckling) and nonlinear (post-buckling) part. The main assumption is
that only a simplified structure with the length equal to the half-
wavelength of buckled mode of a beam should be analyzed. Later in this
paper, we will verify this assumption by comparison with other
numerical results.

Moreover, a local post-buckling behavior of plates has been
successfully investigated using the semi-energy FSM [18], followed by
a set of works where the method is used for analysis of many nonlinear
problems of plates [19,20]. In this method, the classic interpolation
function is inserted into the von Karman's compatibility equation,
which is solved exactly. The similar approach is used for the develop-
ment of an exact finite strip, which is introduced in [21] and
implemented for a wide range of structures [22–24]. The method is
named "exact" since an exact buckling mode is introduced into the von
Karman's equations and it is accurate for structures for which one series
term is sufficient to describe their behavior.

In addition, the FSM has been satisfyingly used to pass a limit point
for the first time in [25], while the first paper that deals with an
analysis of thick plates is [26]. An approach to an elastic-plastic
nonlinear analysis of cold-formed sections is proposed in [27].
Although the compatibility of displacements at section corners is not
fully satisfied, an appropriate choice of interpolation functions over-
comes it. Analysis of a nonlinear response of a cable-stayed bridge by
adopting eigenfunctions of an equivalent continuous beam for inter-
polation functions is proposed in [28]. Next, papers [29,30] deal with
the nonlinear analysis of thin plates and thin-walled structures with
emphasis on the necessity for inclusion of a full harmonic coupled
formulation, which has been often neglected. It is stressed out that the
coupled formulation must be applied for analyses where the buckling
mode interaction is expected. An effort for improvement of this
approach via parallelization is presented in [31,32]. Furthermore, the
validation of nonlinear FSM analysis of C sections with the experi-
mental results has been materialized in [33]. Local buckling of stiffened
plates is considered in [34]. It is pointed out that the nonlinear
equations of balance are coupled and it can be swimmingly avoided
by neglecting the non-diagonal blocks of a tangent stiffness matrix.

Additionally, a significant improvement of nonlinear FSM has been
accomplished in [35]. It has been proved that the classic longitudinal
membrane interpolation functions are not well-suited for modeling of
free ends. By the addition of a linear function to the sine series, an
analysis of structures with an arbitrary end shortening has been
empowered. Nonlinear analysis of layered composite plates is presented
in [36] with the comparison of trigonometric and spline functions,
while also a generally spaced spline has been introduced. It turns out

that the semi-analytical FSM is more accurate for certain cases while a
spline, especially a generally spaced, is more functional. Also, a post-
buckling of composite plates under a combined compression and shear
loading is examined in [37]. Nonlinear behavior of viscoelastic plates is
analyzed in [38,39], where bubble functions have been used instead of
classic polynomials.

The spline finite strip method (SFSM) is extensively developed and
widely used. Its application to geometric nonlinear analyses of plates is
presented in [40], while an extension to non-elastic buckling of beams,
columns, and plates is given in [41]. The post-buckling behavior of
cylindrical shells with imperfections has been considered in [42]. It is
discussed that a displacement-dependent load is a controversial theme
in the FEM and demonstrated that this type of load modeling is
necessary for some problems. Furthermore, the same authors in [43]
state that for the transverse membrane displacement component the
third order polynomial is needed. In addition, geometric nonlinear
analysis of thin-walled structures using the SFSM is presented in [44],
where boundary conditions have been derived in detail. Also, papers
[45,46] handle with static and dynamic geometric nonlinear analysis of
stiffened plates using the SFSM. The presented procedure for modeling
stiffeners is similar to the compound strip approach, which will be used
in this research. In [47,48], an isoparametric nonlinear analysis of thin-
walled structures using the SFSM is given. Adaptability of the method
has been emphasized via a detailed analysis of structural perforations.

All the aforementioned facts show that the semi-analytical FSM, and
FSM in general, is a powerful method for solving many sophisticated
behaviors of structures in the linear and nonlinear analyses. However,
the semi-analytical FSM still has many disadvantages and they are
mostly due to its approximation of displacement field with a series of
continuous functions. Most of the previous theoretical works were
mainly focused on problems of initiation of internal supports, stiffeners,
and non-uniform characteristics along the strip only in linear analyses.
Notwithstanding the application of those elements in the linear
analysis, their implication in a nonlinear region is a crucial factor for
the improvement of the FSM. Besides, the boundary conditions other
than the simply supported are rarely used in literature and their
contributions and effects should be elaborated. In order to take the
advantage over the other methods, the semi-analytical FSM has to be
enhanced.

The main aim of this paper is to overcome those disadvantages using
the harmonic coupled semi-analytical FSM in geometric nonlinear
analyses. A new computational model has been presented and the
finite strip technique has been extended to investigate structures of
complex geometries and arbitrary boundary conditions. Here we would
like to emphasize that the total Lagrangian approach, large displace-
ment, finite strain (but small) and infinitesimal rotation theory have
been used. Also, some of the preliminary results are given in [49–53],
but a significant generalization and improvement are presented in this
paper. Moreover, the presented approach is implemented in an open-
source software framework. The accuracy of the applied mathematical
model and computational approach has been verified by direct
comparisons of results available in literature and using the multi-
purpose software package Abaqus.

2. A flat shell finite strip

The displacement components of a flat shell finite strip are
approximated as a series of products of the polynomials u0m, v0m and
wm and trigonometric functions Ym and Yvm:
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where r is a number of series terms, u0, v0 and w are the displacement
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