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ARTICLE INFO ABSTRACT

The constrained finite strip method (cFSM) is an extension of the semi-analytical finite strip method (SAFSM) of
structural analysis of thin-walled members, where consideration of the displacement fields utilised and of
various mechanical criteria allows constraint matrices to be formed. The application of these constraint matrices
to the linear buckling eigenvalue problem of the SAFSM results in deformation fields that satisfy the considered
criteria and, therefore, isolate particular modes. Through careful selection of the mechanical criteria, the
deformation fields obtained may be restricted to particular buckling modes. This is referred to as modal
decomposition. While the cFSM has been applied to modal decomposition of thin-walled, prismatic members
under the action of longitudinal normal stresses, it has yet to be applied to such members under the action of
shear stresses. Recent work using the SAFSM to analyse the buckling behaviour of thin-walled, prismatic
members under applied shear stresses, notably by Hancock and Pham, has shown that the issues of potentially
indistinct minima or multiple minima in the signature curve can occur under this loading, as they did for
compression and bending. This paper briefly presents the derivation of a SAFSM that permits coupling between
longitudinal series terms of sines and cosines and also considers membrane instability due both to shear stresses
and transverse normal stresses. It then presents the application of the cFSM to such a finite strip and results are
produced for members under shear stresses. While the results are presented for members with unrestrained ends
(equivalent to infinitely long members), simplification via removal of the degrees of freedom not present in
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typical FSM formulations would allow finite length members with simply-supported ends to be analysed.

1. Introduction

The finite strip method (FSM) developed by Cheung [1] is a
specialisation of the finite element method that utilises longitudinal
regularity of the analysed member to reduce the dimension of the
problem being analysed. First utilised for local buckling analysis of
thin-walled members by Przemienicki [2], before being extended to
other forms of buckling by Plank and Wittrick [3], the FSM has become
an indispensable design tool thanks to its ability to generate a curve
showing the critical elastic buckling stress of a section as a function of
the buckling half-wavelength, when only a single longitudinal half-
wavelength is considered; this is known as the signature curve of a
section and is a concept that was popularised by Hancock [4]. The
ubiquity of the FSM in the analysis and design of thin-walled, cold-
formed steel members has only become more prevalent with the
development of the Direct Strength Method (DSM) [5] which, in
practice, predicts the ultimate strength of a member by considering
the signature curve and the geometric and material properties of the
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section. Typically, this process involves taking the buckling stress
values of the signature curve at its two minima as the critical stresses
corresponding to local and distortional buckling, and using these in the
DSM strength equations [6,7]. However, there are many sections for
which the signature curve may not have two minima, or may have more
than one minimum for local or distortional buckling [8]. Further, the
buckling modes at the lengths where the signature curve attains its
minima may not be ‘pure’ local or distortional modes. These ambi-
guities in the signature curve prompted the development of the
constrained finite strip method (cFSM) [9-11], which draws on the
mechanical assumptions of Generalised Beam Theory (GBT) [12] in
order to define pure global, distortional and local buckling modes.
Application of the cFSM, available in the finite strip computer program
CUFSM [13], then allows the critical buckling stresses of these pure
local and distortional buckling modes to be determined. As the DSM is
calibrated based on signature curves developed for the general (i.e.
unconstrained) deformation field of the FSM, application of cFSM to the
DSM and further development of the cFSM are fields of ongoing
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research [14-16].

Until recently, the DSM has only been applicable to members under
longitudinal normal stresses, i.e. compression and/or bending; it has
recently been extended to C-section members under shear [17]. As for
the DSM for compression and bending, the DSM for shear requires
knowledge of the signature curve of the section. The first semi-
analytical finite strip capable of analysing members under shear stresses
was that of Plank and Wittrick [3], which was recently revitalised by
Hancock and Pham [18,19] who applied the formulation to the
buckling of C-sections under shear stresses. It should be noted that, as
their SAFSM assumes longitudinal regularity, including stresses, the
moment gradient necessary for a section under shear to be in
equilibrium cannot be replicated and so the members analysed are
under ‘pure’ shear. Their analysis, as well as subsequent analyses, such
as of C-sections with longitudinal stiffeners [20], revealed signature
curves that display many of the same ambiguities of those developed for
members in compression and/or bending; i.e. indistinct minima and
possible mode coupling.

In light of this, applying the cFSM methodology to members in pure
shear would prove useful, both as a theoretical tool for examining the
buckling behaviour of such members and for assisting in further
development of the DSM for shear. As the cFSM methodology is largely
separate from the FSM to which it is applied, this paper will first present
a finite strip that may be applied to members in a combined loading
state, where all components of the Green-Lagrange in-plane strains are
considered in formulating the stability matrices. Coupling between
longitudinal series terms of different numbers of half-wavelengths is
also permitted. Subsequently, the application of the cFSM methodology
to this FSM will be elucidated, using the recently-developed generalised
cFSM [21,22].

2. SAFSM for applied shear
2.1. Linear buckling analysis

The linear buckling eigenvalue problem of the SAFSM is a second-
order analysis formulated via the theorem of stationary potential
energy. The total potential energy of the system is the sum of the
internal elastic strain energy U,, which is obtained by evaluating the
energy stored by the actions of the internal linear stresses ¢, in the
linear strains ¢, and the potential energy due to the externally applied
stresses, which is obtained as the negative of the work W of the applied
stresses ¢ in the respective non-linear strains &y;. This total potential
energy is as shown in Eq. (1), where the integral is over the volume of
the elements of the system and the linear stresses and strains are related
by o1 = E¢;, where E is the relevant constitutive matrix for the problem
at hand.
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By relating the strains to the degrees of freedom d of the system, the
total potential energy may be rewritten as given in Eq. (2), where Kg is
the global elastic stiffness matrix of the system and Kg is the global
geometric stability matrix of the system, which scales linearly with the
applied stresses and so is often written as a load factor A multiplied by
K¢ calculated for some reference stresses. Obtaining the stiffness and
stability matrices for the SAFSM is briefly described in the following
sections.

U - W= %dTKEd - %dTKGd = %dT(KE - JKgd @
By making the total potential energy of Eq. (2) stationary with respect
to each degree of freedom, the linear buckling eigenvalue problem of
the SAFSM is formulated and is as given in Eq. (3), where A is a
diagonal matrix containing the eigenvalues of the problem and @ is a
matrix whose columns are the corresponding eigenvectors.
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2.2. Displacement fields

The first SAFSM able to analyse members under shear was that of
Plank and Wittrick [3], who utilised complex degrees of freedom
coupled with complex exponentials as defined by Eq. (4), where ¢ is
proportional to the coordinate in the longitudinal direction and i is the
imaginary unit, to incorporate the phase-shift of displacements across
the strip width that occurs for a member under shear stresses.

e = cosé + i-siné 4
The displacement fields d were then defined as,
d = Re{Nd-¢*} 5)

where N is the vector of transverse shape functions for the current
displacement field, d is the vector of corresponding complex degrees of
freedom and ‘Re’ denotes the real part of its argument. When evaluating
the longitudinal (warping) displacements, the argument of Eq. (5) was
multiplied by i to incorporate the out-of-phase nature of these
displacements with respect to the transverse displacements. The utilised
longitudinal functions correspond to a finite-length member with
unrestrained ends or, equivalently, a member of infinite length with
supported ends. Due to its complex mathematics, formulation of the
stiffness and stability matrices depended on the identity given in Eq.
(6), where a and b are vectors of equal length, G is a square matrix of
corresponding size and the bar denotes the complex conjugate. This
identity has no direct analog for the case where the arguments of the
two complex exponentials differ and so coupling between longitudinal
series terms is not possible.
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One method to overcome this is to explicitly evaluate the ‘realness’ of
Eq. (5) prior to formulating the stiffness and stability matrices. This was
done by Mahendran and Murray [23] and resulted in a FSM with twice
the usual number of degrees of freedom. Although this explicitly real
displacement field of sines and cosines makes it possible to consider
coupling between longitudinal series terms, Mahendran and Murray did
not do so. The right-handed coordinate system and degrees of freedom
utilised herein are as shown in Fig. 1; the corresponding displacement
fields are as given in Egs. (7)-(11), where c,, and s,, are as defined by
Eq. (11) and so correspond to m half-wavelengths along the considered
length L, the superscripts ‘r’ and ‘i’ refer to the real and imaginary
components of the complex degrees of freedom of Eq. (5), and q is the
number of series terms considered. Note that, due to the sign of the
shape functions used for the rotational degrees of freedom, a positive
rotation about the longitudinal axis is defined by the left-hand rule. The
degrees of freedom in Fig. 1 are all shown at the mid-length of the strip,

y

Fig. 1. Local degrees of freedom and axes of a finite strip.
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