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An efficient Galerkin meshfree flat shell formulation is presented for the analysis of buckling behaviors of
stiffened plate structures. Both plate bending and membrane deformations are approximated by the reproducing
kernel particle method (RKPM). The governing equation is transformed into a weak form, and it is discretized by
the scattered nodes. The stiffness matrix is numerically integrated with the nodal integration technique, i.e., the
stabilized conforming nodal integration (SCNI). The RKPM and SCNI based flat shell modeling approach can
address the shear locking problem. Additionally, the present discretization is further improved by involving a
drilling rotation component, which is to effectively model the stiffeners. There are six degrees of freedom per
node. A singular kernel is also introduced into a set of the interpolants to model the web/flange connection, as
well as the imposition of the essential boundary conditions. A generalized eigenvalue problem is analyzed for
evaluating buckling loads/modes of the stiffened plate structures. The accuracy of the numerical results and the

effectiveness of the proposed method are examined through several numerical examples.

1. Introduction

A ship's hull structure is subjected to longitudinal bending induced
by external loads, e.g., self-weight, cargo weights and wave forces. The
hull structure is generally composed of plates, stiffeners and stiffened
plate structures [1-4]. It is important to design the structural members
optimally, by choosing the thickness and aspect ratio of the plating as
well as size of the web/flange and the number of stiffeners to prevent
the occurrence of the structural failures within a limited construction
expense. Many researches have been performed on the evaluation of
buckling loads/modes and found the ultimate strength for the stiffened
plate and hull structures, e.g., see Refs. [5-10]. The present study
focuses on buckling analysis of the plate and stiffened plate structures,
by employing a novel numerical simulation method.

In recent years, meshfree and other related methodologies, e.g., the
element free Galerkin method (EFGM) [11], the reproducing kernel
particle method (RKPM) [12], the extended finite element method
[13,14], the isogeometric analysis [15-18], and the wavelet Galerkin
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method [19-23], have been widely adopted to analyze scientific and
engineering problems. Meshfree method is particularly attractive for
the analysis of plate and shell structures. Continuous functions can be
used to approximate the deflection and rotational components, smooth
stress/strain distributions are obtained throughout the entire analysis
domain, and the shear locking problem can also be avoided. Krysl and
Belytschko [24,25] analyzed plate and shell problems by employing the
EFGM. Noguchi et al. [26] solved shell and spatial structures by EFGM
employing a convected coordinate system. Kanok-Nukulchai et al. [27]
examined the shear locking property of meshfree plate bending
problems. Generally, plate and shell problems with flat or smoothly
curved surfaces were modeled by the meshfree method because a
special treatment is required to address the displacement discontinuity
or its derivative. Zhang et al. [28] analyzed shell structures with
discontinuities employing a moving least-square approximation with a
discontinuous derivative function. Tanaka et al. [29-31] treated the
displacement discontinuity of a cracked shear deformable plate by
modifying the reproducing kernel (RK) interpolation functions along
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the crack segment with a diffraction method and a visibility criterion
[32,33].

An efficient Galerkin meshfree method is presented here to analyze
buckling behaviors of assembled plate structures such as a stiffened
plate structure. A flat shell formulation is employed based on the RK
approximation [12,34-37]. Mindlin-Reissner plate formulation is
adopted to represent the plate bending deformation, and plane stress
condition is assumed for the membrane deformation. The in-plane and
out-of-plane deformations are coupled and approximated by the RKs.
The flat shell is modeled by the scattered nodes, and the stabilized
conforming nodal integration (SCNI) [38,39] is employed to accurately
integrate the stiffness matrices with the Voronoi cell diagram [40]. The
flat shell modeling on the basis of the RKPM and SCNI can overcome the
shear locking problem by imposing a so-called Kirchhoff mode repro-
ducing condition (KMRC) [41,42]. Wang and Sun [43] and Sadamoto
et al. [44] analyzed geometrically nonlinear problems for the flat shells.
Yoshida et al. [45] succeeded in producing a linear buckling analysis of
a flat shell model including curved stiffeners. The flat shell modeling
involves five degrees of freedom (5DOFs) per node, and the stiffeners
were modeled by suppressing the deflection components of the flat shell
model. Curved shell problems were also analyzed in [46].

In the present research, a drilling rotation component is included to
model stiffeners efficiently. Therefore, the meshfree discretization
possesses six degrees of freedom (6DOFs) per node. Because the drilling
component does not have any resisting force or stiffness, a penalty
energy function proposed by Kanok-Nukulchai [47] is introduced. In
the author's previous study, a multiple point constraint (MPC) techni-
que was adopted for the meshfree web/flange modeling and imposition
of the essential boundary conditions in [48]. However, stress oscillation
was found along the boundary conditions in the MPC enforcements
[44]. A singular kernel (SK) [49] is then applied to impose the so-called
Kronecker delta function property in the set of the meshfree inter-
polants. Additionally, sub-domain stabilized conforming integration
(SSCI) [50-55] is employed for evaluating the stiffness matrices around
the web/flange connections. So far, research has been conducted to
analyze the buckling behaviors of the plates and assembled plate
structures using meshfree and related methods in [56-66]. The model-
ing of stiffened plate structures based on RKPM and SCNI, and high
accuracy buckling loads/modes evaluations have not been reported yet.
The mathematical formulation and discretization of the proposed
method are presented for analyzing the stiffened plate structures. The
calculated results are critically examined through the numerical
examples.

The contents of this paper is as follows. The meshfree flat shell
formulation including the drilling rotation component and the nodal
integration techniques are presented in Section 2. Modeling of the
stiffened plate structures is discussed in Section 3. Numerical examples
for several buckling problems for plate and stiffened plate structures are
presented in Section 4. Conclusions are given in Section 5.

2. Meshfree modeling for a flat shell
2.1. Governing equations for linear buckling analysis

When simulating buckling behaviors of plate structures, the plate
bending deformation, in contrast to the membrane deformation, cannot
be neglected. A flat shell formulation is developed by combining the in-
plane and out-of-plane deformations. A schematic flat shell model is
represented in Fig. 1. S is the area of plate and tj, is the plate thickness.
A plane stress condition and Mindlin-Reissner plate theory are adopted
to allow shear deformation of the plate. The membrane deformations in
the x;- and x»-directions at the mid-thickness plane are represented by
Uimia and Upnmiq, respectively, the deflection component of the plate is
represented by us, and the rotational angles for the x;- and x-axes are
represented by 6, and 6,, respectively. 05 is the drilling rotation
component.
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The plate deformation u(x) can be expressed as:

u)(x) Upig(X) + 26,(x)
u(x) = up(x) ¢ =4 Upyig(x) — 26,(x) ¢,
u3(x) us(x) 6))

where u,(x) (k=1,2,3) are components of the displacement toward the
xi-axes. z(zl < 1,/2) represents the distance from the mid-thickness
plane of the plate.

When considering an elastic stability problem of a shear deformable
plate, the following weak form can be obtained:

f o Se,dV + 1 f &'y deydV = 0,
v % 2
where g and ¢, are the linear and nonlinear strain tensors. § represents
variational operator. V is the volume of the plate. The linear strain
components ¢; (=g ) can be described as:
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The nonlinear strain tensor ¢, is defined as:
o = l[ ouy 0uk]
v = 550 o |
2\ ox; ox; 4)

Additionally, 6 ={0,, 65, 0, 63, 653} is the Cauchy stress tensor. The
stress-strain relationship can be written as Deg, and the elastic
coefficient matrix D for the shear deformable plate is written as:
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00 O 0 k= (5)

where « is the shear correction factor, and x=7%/12 is adopted. E is the
Young's modulus and v is the Poisson's ratio. 6’ is a pre-buckling stress
tensor which is represented as:
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where I is a 3 X 3 unit tensor. ¢’y 53 is set as zero based on the plane
stress assumption.

2.2. A RKPM meshfree approximation of a flat shell

In the meshfree discretization, nodes are distributed on the mid-
thickness plane of the plate as shown in Fig. 1. The physical quantities
are approximated by a linear combination of the RK functions. Each
node has 6DOFs, i.e., three in-plane deformation components
@ty mig> Uomig» 03) and  three out-of-plane deformation components
(u3, 6y, 6,), respectively. The 6DOFs are denoted as:
() mia Uamia U3 6) O, 03}T = {u; uy uy uy us us}T. The vector components
u?(x) (i=1,...,6) (= u"(x)) are represented by RK yy(x) (I=1, ..., NP)
as:

NP
u'®) = Yy, (=1, ..., 6),
I=1

(7)
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