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A B S T R A C T

This two-part work describes the development of a comprehensive and reliable tool for analysis of the most
commonly used geometries of thin-walled, open-section composite beams. Part one describes formulation of an
asymptotically-correct reduced order model and simple validation examples. The model, developed using the
mathematically rigorous Variational Asymptotic Method (VAM), is capable of capturing all nonlinear and non-
classical effects observed in anisotropic beams. It leads to closed forms solutions and thus rapid, yet accurate,
analysis. Part two describes the application of developed theory to most commonly used geometries of thin-
walled, open-section composite beams.

1. Introduction

Thin-walled composite beams have become an integral part of many
engineering structures today. The technology, which evolved mainly
from the aerospace industry (e.g., rocket motor casings, space booms,
rotor blades, etc.), finds its application in fields as diverse as sports
(e.g., skis, tennis rackets, golf clubs, etc.), sea hulls, offshore rigs,
automotive components (e.g., power transmission shafts), and archi-
tecture (e.g., I-section beams, channel-section beams, etc.). Despite
their superior engineering properties and enhanced manufacturing
technology, their development is not up to their potential due to cost
considerations. One of the sure ways to reduce development cost is to
establish accurate analysis tools to aid in tailoring of composite
structures. In particular, analytical tools that can be used in preliminary
design and efficient numerical tools that can be used in detailed design
are of prime importance.

Existing classical analytical tools suffice for most simple structures.
However, many important practical phenomena have been observed in

thin-walled beams to which these classical tools are blind. The effects
being dealt with in this work are non-classical nonlinear effects. We
begin with the introduction and definitions of some terminology.

Physical nonlinearities are basically nonlinearities in the stress-
strain relationship becoming important by virtue of strain being large.
Geometrical nonlinearities, on the other hand, are nonlinearities in the
strain-displacement relationship becoming important by virtue of
rotation being (at least moderately) large. A nonlinear beam theory
could arise either due to 1-D physical nonlinearities or 1-D geometric
nonlinearities or both. Certain 1-D physical nonlinearities occur
because of 3-D geometric nonlinearities (large 3-D warping), and these
are called non-classical nonlinearities. Composite open-section beams
have low torsional rigidity and hence allow fairly large twist rates, not
only due to torsion but also to coupling with other types of loading that
accentuate the importance of nonlinearities involving twist. These
effects are important in the case of thin-walled beams, but in an
asymptotic sense they are not so important in the cases of beams with
solid or thick-walled sections. Summarizing, in slender structures
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undergoing motions with large wavelengths, these nonlinear and non-
classical effects may play a significant role. Moreover, additional
refinements are required to enhance the accuracy of the solution in
the following cases: (a) Timoshenko refinement is required when short
wavelength modes associated with transverse shear are involved; (b)
Vlasov refinement is required for thin-walled, open-section beams, as
captured in the current work; and (c) general refinements are required
when new degrees of freedom are introduced particular to the problem
– such as high-frequency vibrations.

The current work is motivated by the need for a general-purpose
tool to capture the non-classical effects of thin-walled, open-section
composite beams in closed-form via an asymptotic method. It is focused
at developing analytical solutions incorporating nonlinear strain fields,
which are the sources of many such effects. This work addresses non-
classical effects observed in thin-walled, open-section beams that can be
considered as a pretwisted assembly of strips. The primary 3-D sources
of nonlinearity in such a beam stem from the out-of-plane cross-
sectional warping. This 3-D nonlinearity manifests as two well-known
non-classical effects, namely Trapeze and Vlasov effects.

Before proceeding ahead, it is important to understand the classi-
fication of beams as discussed in [26]. As per the nomenclature used in
this work, beams are classified into T-class, S-class and R-class. Consider
the characteristic length along the thickness is h and along the cross-
sectional plane is a. T-class refers to the thin-walled, open-section
beams that is of primary importance to this work. T-class beams are
torsionally soft, in comparison to bending, since the strain induced by
twisting is O hκ( )1 , while the strain induced by bending is O aκ( )2 or
O aκ( )3 . S-class beams are strip-like with a h> > a h> > . These beams
are soft in torsion and also in one bending direction. High aspect-ratio
wings, helicopter blades etc fall into this category. Finally, the R-class
beams are the regular beams that are neither T-class nor S-class and do
not demonstrate significant length effects. Some examples are closed-
cell, solid, closed-section beams.

Thin-walled composite beams are widely favored in aerospace
structures. Examples of sections that can be analyzed using the present
work include I-sections, T-sections, X-sections, Z-sections, cruciforms,
and any custom section that can be constructed from an assembly of
arbitrarily oriented straight elements. Though 3-D finite element
modeling of such beams is possible, it is computationally expensive
when modeling large structures. Existing classical analytical tools
suffice for most simple structures. However, many important practical
phenomenon have been observed in thin-walled composite as well as
isotropic beams to which classical tools are blind. Many existing 1-D
models make ad hoc assumptions for thin-walled beams and neglect the
non-classical effects.

This work takes advantage of the beam-like configuration, which
allows consideration of the ratio between a characteristic cross-
sectional dimension and the wavelength of the deformation along the
beam as a small parameter. The non-linear 3-D problem is decomposed
into two simpler problems: a two-dimensional (2-D) nonlinear analysis,
which provides in a compact form the cross-sectional properties using a
mathematical technique called the Variational-Asymptotic Method
(VAM), and a nonlinear one-dimensional (1-D) problem along the
length of the beam. The results from the former analysis act as inputs
to the latter, and both may be highly nonlinear. Owing to this
decomposition, a major simplification ensues in the complex 3-D
problem. This efficient approach to the structural analysis of beams is
outlined as a flowchart in Fig. 1.

The nonlinear cross-sectional analysis provides stiffness coefficients
along with recovery relations, which are functions of the generalized 1-
D strain measures. The stiffness coefficients are needed to solve the 1-D
beam problem. Solving the 1-D problem, one obtains the 1-D displace-
ments and generalized strain measures. After both problems have been
solved, the in-plane and out-of-plane warping of the cross section, the
total 3-D displacement field, and the 3-D strain and stress fields can all
be recovered.

VAM also brings into importance the concept of asymptotic
correctness. The theoretical or numerical solutions obtained are
approximate in nature. Accuracy of the numerical solutions are asserted
by reduction in relative error norms (or otherwise often referred to as

Nomenclature

x1 Cartesian coordinate along the reference axis of a beam
xi Cartesian coordinates for a cross section, i = 2, 3
bi unit vectors for undeformed geometry, i = 1, 2, 3
Bi unit vectors for deformed geometry, i = 1, 2, 3
qi rigid-body-like displacements of a cross section, i= 1, 2, 3
Γij 3-D strains, i j, = 1, 2, 3
σij 3-D stresses, i j, = 1, 2, 3
Eijkl 3-D stiffness constants, i j k l, , , = 1, 2, 3
ϵαβ 2-D membrane strains, α β, = 1, 2
ραβ 2-D elastic curvatures, α β, = 1, 2
Aij 2-D membrane stiffness constants, i j, = 1, 2, 6
Bij 2-D coupling stiffness constants, i j, = 1, 2, 6
Dij 2-D bending/twisting stiffness constants, i j, = 1, 2, 6
γ11 1-D axial strain
κ1 1-D elastic twist per unit length

κi 1-D elastic bending curvatures, i j, = 2, 3
S 1-D stiffness matrix
wi warping of a cross section, i = 1 (out-of-plane), i=2, 3 (in-

plane)
ℓ characteristic wavelength of a beam
b characteristic dimension of a cross section
h thickness of a thin wall
k1 initial twist per unit length of beam
k2 initial flatwise curvature of a strip
δh small parameter, h

b
δb small parameter, b

ℓ
δt small parameter, bk1
ϵ small parameter, magnitude of largest Γij

Ns total number of strips making up an open-section beam
Nj total number of joints in an open-section beam
N m( )c number of strips connected at m-th joint

Fig. 1. Procedure for beam analysis.
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