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A B S T R A C T

The paper is devoted to the stability of an orthotropic multi-layered beam. This beam is an untypical sandwich
structure the faces of which consist of three layers. The original mathematical model of the beam is formulated
taking into account different properties of each layer. From the Hamilton's principle the system of equations of
motion is derived which is the base for the analysis of buckling and vibration problems. As a result of the analysis
the buckling load and natural frequencies of exemplary plates have been obtained. The results are compared
with these given by the numerical solution realised with the use of the finite element method in the ANSYS and
ABAQUS systems.

1. Introduction

The theory of sandwich structures is developed from the middle of
20th century, that is evidenced by the papers published in journals and
at conferences. Basic facts on sandwich structures, their generalizations
and applications, can be found in, e.g., Libove, Hubka [1], Allen [2] and
Ventsel, Krauthammer [3]. Besides monographs there are also many
papers on this subject. Computational models for sandwich plates and
shells, predictor-corrector procedures, and the sensitivity of the sand-
wich response to variations in the different geometric and material
parameters have been studied by Noor, Burton and Bert [4]. Carlsson,
Nordstrand, Westerlind derived tension, shear, bending and twisting
rigidities for sandwich structures with corrugated core. The paper [5] is
devoted to the computation of the effective properties of corrugated
core sandwich panels. Talbi, Batt, Ayad, Guo [6] presented an
analytical homogenization model for corrugated cardboard and its
numerical implementation in a shell element. In the paper [7] by
Cheng, Le, Lu the finite element method (FEM) is used to derive
equivalent stiffness properties of sandwich structures with various types
of cores. Similar results can be found in [8,9].

The present work is a continuation of the research on multi-layered
structures with corrugated core conducted by the authors and co-
authors. First works [10,11] were derived to classical sandwich
structures. Strength and stability of aluminium beams with lengthwise
and crosswise corrugated core have been analysed. To increase the
flexural stiffness of such beams the modification has been introduced
presented in works [12,15]. In structures presented here the faces are

composed of two elements: inside one which is a corrugated plate and
outside one in the form of a flat sheet. The corrugations of the core and
the faces are perpendicular to each other. The results of experiments on
these five-layered beams presented in papers [16,17] showed that
although the stiffness of the beam is much higher when compare to the
stiffness of a three-layered beam, the connection between two corru-
gated plates can be the weak point of the structure. Further modifica-
tion has been made then by introducing a flat sheet between two
corrugated plates. This way a seven-layered beam has been obtained – a
sandwich beam with three-layered faces, as can be seen in Fig. 1.

The thin-walled beam presented in this paper is an innovatory
orthotropic structure, not referred to in the literature. The main core is
a lengthwise corrugated sheet. The two faces are three-layered struc-
tures the core of which, referred to as face core, is a crosswise
corrugated sheet. The internal and external sheets of the faces are flat.
All layers of the beam are made of the same material which is isotropic
and homogeneous. A characteristic feature of the beam consists in
differentiation of shear effects in particular layers, according to the
core's corrugation direction. The deformation of the beam's cross
section also depends on this direction. An original mathematical model
of the structure will be formulated in the following sections. The model
will include the hypothesis of deformation of the cross-section as well as
rigidities of the layers in particular directions.
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2. Analytical studies

2.1. Mathematical model of the beam

The classical approach to modelling of sandwich structures is to
assume a broken line hypothesis as to the field of displacements. For
more than three layers the zig-zag hypotheses can be used formulated
by Carrera [18]. In the proposed structure the stiffness of the core of the
faces is considerably higher than the stiffness of the main core. For this
reason it is assumed that the three-layered faces deforms according to
Kirchhoff-Love hypothesis and the shear effect is present in the main
core only. Consequently, the field of displacements of the cross section
of the beam takes the form shown in Fig. 2. Introducing dimensionless
function describing displacements ψ x u x t( ) = ( )/ c1 1 it can be expressed as
follows:
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In the above formulae tc1, tc2, ts (see Fig. 2) describes the thicknesses of
particular layers. The indexes c1, c2 and s corresponds to the inner core,
the core of the faces and flat sheets, respectively. For the assumed
hypothesis of deformation of the cross section – no shear effect in the
faces – the geometric relations, the strains, are
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Since the stiffness of each layer is different, depending on the
geometry, the physical relations, according to Hooke's law, have to be
written in the form
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shear modulus described in details in [19]. E is the Young's modulus of
the material of the beam. The Hamilton's principle can be written as
follows:
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– the work of the load, t1, t2 – the initial and final

times,
ρ – the mass density of the beam, L – the length of the beam, F0 – the

compressive force.
Based on the above principle the equations of motion have been

derived
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where

Fig. 1. Scheme of the beam with lengthwise corrugated core.

Fig. 2. Scheme of deformation of beam's cross section.
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