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Majority of the available research on buckling analysis of the plates, has been devoted to plates with well-
behaved configurations, e.g., rectangular or circular geometries. In the present research, thermal buckling of
general quadrilateral plates fabricated from heterogeneous, orthotropic, and auxetic (with negative Poisson
ratio) materials resting on elastic Winkler-Pasternak elastic media is investigated. Edges of the plate may be
either simply supported or clamped. Thus, the problem is a quite general one, from the material, boundary
conditions, and to some extent, geometry points of view and may cover wide ranges of the practical applications,
as special cases. The stability equations are derived through transformation of the governing equations of the
plate from the geometric rectangular Cartesian coordinates to the computational natural coordinates and
discretization of the resulting equations by means of the differential quadratic method. Buckling analysis has
been accomplished through investigation of the pre-buckling and buckling onset situations. Finally, effects of the
skew angles of the general quadrilateral plate, heterogeneity index, orthotropy angle, edge condition, foundation
stiffness, and auxeticity of the material on the buckling temperature rises are investigated comprehensively.

1. Introduction

Plates with quite well-behaved geometries, e.g., rectangular plates,
are usually employed in the simple engineering structures only.
Infrastructures and underframes of the aerospace, mechanical, vehicu-
lar, rail, and marine vehicles are generally constructed from curved
plates (shells) or plates with either curved or generally non-parallel
edges. Therefore, investigation of buckling behavior of the skew plates
is of practical importance. Experimental and numerical observations
reveal that significant compressive stresses that may lead to buckling
may be induced in the plates, due to small temperature rises in the
surrounding environment [1-6] and sometimes, buckling sensitivity to
the thermal loads may be more pronounced than that of the direct
mechanical loads, especially for thinner plates.

The local excessive stresses that either lead to delamination or
slippage of the fibers relative to the matrix of the traditional orthotropic
plates, due to using distinct phases and layers of materials, may be
eliminated by using functionally graded materials (FGMs) [7,8].
However, orthotropy of the material properties is advantageous when
a directional stiffening is crucial. Orthotropic functionally graded
materials and constructions may be achieved through using a large
number of perfectly bonded thin orthotropic layers with slightly
varying material properties [9-14]. The heterogeneity of the materials
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may also stem from effects of the humidity or moisture [6,9,10]. While
vibration and buckling of the orthotropic FGM shells were first
investigated by Sofiyev et al. [9] and Sofiyev [10-12], mechanical/
thermal buckling of the FGM orthotropic plates has been investigated
by Asemi and Shariyat [13], Shariyat and Asemi [14], and Mansouri
and Shariyat [6,15]. The elastic foundation alters the buckling strength
and deformations pattern. Kiani et al. [16] used the classical plate
theory (CPT) to determine thermal buckling loads of clamped FGM
rectangular plates on elastic foundations. Alipour and Shariyat devel-
oped semi-analytical solutions for buckling analysis of variable thick-
ness transversely graded [17] and bidirectional FGM [18] viscoelastic
circular plates on elastic foundations. Buckling of FGM plates on
Pasternak foundations was studied by Thai and Kim [19], using the
third-order shear deformation theory. Zhang and Zhou [20] conducted
mechanical and thermal post-buckling analyses for FGM rectangular
plates resting on nonlinear elastic foundations. Buckling of orthotropic
FGM plates surrounded by elastic foundations was treated by Shariyat
and Asemi [14], employing the 3D theory of elasticity and B-spline
elements. Shariyat and Asemi [21,22] and Asemi and Shariyat [23]
studied biaxial and shear post-buckling of the isotropic and auxetic
FGM plates, respectively, employing the 3D elasticity theory.
Regarding the skew plates, Ng and Das [24] analyzed buckling of
the clamped skew sandwich plates, using Galerkin method. Kamal and
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Durvasula [25] studied free vibration and buckling responses of simply
supported skew and trapezoidal plates, using Ritz method. Liao and Lee
[26] analyzed stability of the laminated skew plates under biaxial
follower forces. Reddy and Palaninathan [27] determined buckling
loads of skew laminates subjected to uniaxial and biaxial loadings,
employing the CPT and the finite element method (FEM). Utilizing CPT
and the shear-deformation first-order theory (FSDT), Wang [28]
investigated buckling of the skew laminates, using a Rayleigh-Ritz
method. Babu and Kant [29] and Kant and Babu [30] employed finite
element models based on the first- and higher-order shear-deformation
theories and skew boundary transformation to obtain critical loads of
the laminated composite sandwich skew plates. Singha et al. [31]
studied buckling and Post-buckling responses of laminated composite
skew plates subjected to uniaxial compression and uniform temperature
rise, using the FEM. Stability of simply supported isosceles trapezoidal
plates subjected to in-plane compression was studied by Mania [32]
semi-analytically, based on the CPT and coordinate system transforma-
tion. Hu et al. [33] employed a non-linear in-plane shear material
constitutive model for FE buckling analysis of the skew laminated
composite plates. Ganapathi et al. [34] analyzed buckling of FGM skew
plates subjected to uniaxial, biaxial, and shear loadings using the FEM
and FSDT. Prakash et al. [35] investigated thermal post-buckling
response of the FGM skew plates, using the FEM-based FSDT. Civalek
[36-38] presented formulations, geometric transformations, and var-
ious numerical approaches for free vibration and buckling of the
arbitrary straight-sided quadrilateral isotropic plates. Malekzadeh
[39] employed the FEM and DQM to study buckling behavior of the
FGM quadrilateral plates. Vosoughi et al. [40] conducted a thermal
post-buckling analysis on laminated composite skew plates with
temperature-dependent properties, using FE-based FSDT formulations
and DQM. Upadhyay and Shukla analyzed buckling and post-buckling
behaviors of laminated composite, sandwich [41], and FGM [42] skew
plates, using a higher-order shear-deformation theory and a linear
geometric mapping.

The foregoing brief literature survey reveals that thermal buckling
of a general quadrilateral plate fabricated from an orthotropic or/and
auxetic FGM has not been investigated to date. This task is undertaken
in the present research. Furthermore, the plate is assumed to be resting
on an elastic Winkler-Pasternak elastic medium. Edges of the plate are
assumed to be either simply supported or clamped. The defined
problem is general enough to cover wide ranges of the practical
applications. The stability equations are derived through transforma-
tion of the governing equations of the plate from the rectangular
Cartesian coordinates to the natural coordinates and discretization of
the resulting equations by means of the DQM.

2. Development of the governing equations
2.1. Description of the geometry and material properties

Geometric parameters of the considered general quadrilateral
orthotropic auxetic FGM plate are defined in Fig. 1, where 6 is the
orthotropy angle of the anisotropic functionally graded material with
respect to the x axis. Sides of the plate are neither of equal length nor

Fig. 1. Geometric parameters of the considered orthotropic functionally graded general
quadrilateral plate.
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parallel.
The thermoelastic constitutive law of the plate may be expressed as:
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where ¢” denotes vector of the thermal strains and @ is the transformed
stiffness matrix of the material. Assuming that the stiffness of the
material increases as one proceeds from the mid-layer toward the top
and bottom layers (to compensate for the maximum in-plane stresses
that occur in these layers) and the Poisson ratio is constant in the
transverse direction, the following exponential law may be employed to
describe transverse variations of each element of the transformed
stiffness matrix [6,14]:
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Q;d is magnitude of the stiffness matrix element at the mid-layer of the
plate. As Fig. 1 shows, the transverse z coordinate is measured from the

mid-layer of the plate. Therefore:
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The thermal strain vector may be written as:
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where AT(x, y) is the temperature rise with respect to a stress free
condition and «; (i, j = x, y) are the thermal expansion coefficients in
the geometric space and may be related to those of the material

principal coordinates as:
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where «; and a, are the thermal expansion coefficients in directions
parallel and normal to the fibers, respectively.
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2.2. Basic kinematic and equilibrium equations of the plate

In-plane and transverse variations of the displacement components
may be described according the FSDT as:

u(x, y, 2) = up(x, y) + z(x, y)
v(x, ¥, 2) = V(% ¥) + 29,x, ¥)

w(x, y, z) = w(x, y) (6)

where u, vy, and w are displacement components of the mid-layer of the
plate, in the x, y, and z directions, respectively, and ¢, and ¢ are rotations of
the section in the x-z and y-z planes, respectively. The relevant strain-
displacement relations are:
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where the comma symbol in the subscripts stands for a partial derivative with
respect to the indicated coordinate. In addition to the edge supports, the plate
may be supported by a Winkler-Pasternak elastic foundation. Therefore, the
governing equations of the plate in the framework of the FSDT become [43]:
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