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A B S T R A C T

A set of linear elastic homogeneous isotropic axisymmetric thin shells of revolution with plane projection of
radius R varying with the height c of the pole, to keep constant mass, is introduced. Their curvature and dy-
namical properties depend on the ratio c R/ , and their linear dynamics is investigated by standard modal analysis,
adopting a commercial code, and accounting for curvature. Natural frequencies for a given mode are linear with
c R/ , decrease for membrane modes, and increase for transverse modes. Thus, membrane and transverse modes
may shift as curvature grows; graphical and numerical results are reported.

1. Introduction

Thin elements find applications in many fields of engineering, be-
cause of their high strength-to-weight ratio (at least under certain ex-
ternal loads), their easy mounting and monitoring. Thin beams, plates
and shells are found in civil, industrial, and aerospace structures: rack
scaffolds, cranes, multistory buildings, bridges, long-span decks, vaults,
motorcycle, automobile, and wing frames, airplane fuselage. As for two-
dimensional elements, leaving it aside more general shapes of the
middle surface, axisymmetric plates and shells have wide ranges of
application, from acoustical instruments and musical elements to
cooling towers at power stations, water tanks, industrial chimneys and
containment vessels, portions of rockets and missiles. Plates and shells
are usually said to be thin when their average thickness is very small
compared with the characteristic dimensions of their middle surface. In
such a case, the shearing strain between the middle surface and the
filaments along their thickness is usually neglected; this theory of lin-
early elastic, homogeneous, and isotropic thin plates and shells is well
known in the literature, and it may be found in both standard and more
recent monographs [1–5].

A key point in the investigation of the behaviour of thin elements is
the study of their linear dynamics, i.e., of their natural frequencies and
free vibration modes for various boundary conditions and shapes. This
is fundamental for the investigation of basic mechanical features of the
considered elements: linear dynamics, indeed, provides information on
the actual stiffness of the member, on its attitude towards buckling and
flutter and to resonance under exciting external forces; in addition, in
recent times, the monitoring of the dynamic response is a key point for
damage detection, hence continuous structural control; moreover, wave

transmission (for instance, acoustic) cannot but rely on the information
on basic linear dynamics of the considered element. Leaving it aside the
huge amount of literature for beams, when dealing with thin shells, in
addition to the already quoted [1–5], the well known monographs
[6–9] may be cited, where many benchmark cases, as well as a vast
amount of quotations to existing papers, are presented. Some recent
papers dealing with the dynamics of axisymmetric isotropic shells are,
for instance: [10], where experimental and numerical investigation
conducted to assess the dynamic behaviour of combined conical vessels
is reported; [11], where a numerical approach for the evaluation of the
exact dynamic stiffness matrix for each segment of composed (seg-
mented) axisymmetric shells is derived, then assembled and made
singular to provide the natural frequencies; [12], where a method for
analysing linear and nonlinear vibrations of circular cylindrical shells
with different boundary conditions is presented, and comparisons with
experiments and finite-element analyses are carried out; [13], which
reviews recent research on the strength, stability and vibration beha-
viour of liquid-containment shell structures. An example of recent in-
vestigations on the applications of shell dynamics to sound and
acoustics is [14], where a submarine hull is modelled as a cylindrical
shell with internal bulkheads and ring stiffeners, and its dynamic re-
sponse is investigated. No mention will be made here to the numerous
publications on anisotropic, composite, non-linear, functionally graded,
piezoelectric axisymmetric shells.

The dynamics of thin plates is basically different from that of shells,
in that in-plane and transverse vibration are uncoupled in plates, and
usually coupled in shells; this is a well known feature of flat and curved
elements. Among the vast literature on the subject, the recent paper
[15] may be quoted, describing vibration of axisymmetric plates in
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conjunction with a fluid environment, as the basis for acoustic in-
vestigations. The review paper [16] may also be quoted for the vibra-
tion of axisymmetric shells with and without fluid interaction. In ad-
dition, it shall not be forgotten that axisymmetric shells may model
musical instruments such as tibetan bells and bowls, cymbals or gongs,
investigated in [17,18].

All the preceding quoted literature usually refers to a benchmark
scheme, i.e., an element, the geometrical characteristics of which are
fixed and parametrized by some quantities, on which the solution of
interest in engineering is made to depend. By varying those parameters,
one investigates, and has the response, of a wide class of elements, all
sharing the same shape. The aim of this contribution is different, in that
it wishes to investigate how the material response of an axisymmetric
structural element evolves and changes with a remarkable change of
the shape of the element itself, once fixed its mass (i.e., the quantity of
material employed in the element). Indeed, it is understood that a
different mechanical response is expected when, starting with the same
amount of material, an axisymmetric plate evolving into an axisym-
metric shell is imagined. Of course, this implies that, by the same
amount of material, and simply changing the initial shape, one may
imagine to tune the structural response of the element in such a way
that, e.g., the acoustic pressure field has a desired shape in the neigh-
bourhood of the element, thus opening the way to some idea of shape
optimization. The aim of this paper is to investigate such a variation of
linear dynamic response, by arranging a family of structural axisym-
metric elements sharing the same volume but having variable middle
surface, starting from a flat one to a hemispherical one. This implies
that the linear response of this family of axisymmetric thin elements
will be followed, thus describing how the natural angular frequencies
and vibration modes depend on the curvature of the element. This is
obtained letting the curvature of the middle surface of the element vary
as a function of the ratio c R/ of the height c of the pole of the ax-
isymmetric shell to the radius R of its circular plane projection.

The solution for the simplest cases, corresponding to the two ex-
tremes of the family (the axisymmetric plate and the hemispherical
shell) can be found in closed form, while the rest of the results are
obtained numerically by a commercial code. Some graphs illustrating
the behaviour of the natural angular frequencies and the relevant nat-
ural vibration modes are provided.

The eigenproperties are found by means of a standard modal ana-
lysis based on the field equations for thin shells [8,2]; the effect of the
curvature is taken into account according to the investigation in [19].
The solution of the relevant modal equations has been performed nu-
merically by the commercial code ®COMSOL . The dependence of the
eigenfrequencies for a given eigenmode on the ratio c R/ will be sear-
ched for: in detail, the variation of such dependence for membrane and
transverse modes will be investigated. In accord with this, the possi-
bility of shifts of some modes will be studied, and the dependence of the
stiffness of the element of the family on the ratio c R/ will be searched
for. Some graphical and numerical results are reported. These results
will be the basis for work in progress in the field of acoustical emission
of these elements.

2. Field equations

Axisymmetric elements can be described geometrically by a set of
orthogonal curvilinear coordinates =α i, 1, 2, 3i . The pair α α{ , }1 2 spans
the shell middle surface, which is a surface of revolution. The third
coordinate α3 lies along the unit normal n to the middle surface at any
of its points, and spans the thickness h, which is supposed uniform at all
points of the middle surface, and thin with respect to the other char-
acteristic lengths of the element. The position vector R of a point of the
shell is referred to a chosen origin in the Euclidean ambient space, and
can be expressed also with respect to a Cartesian ortho-normal triad

=x i, 1, 2, 3i , in that ̂= =α α x i j( ), , 1, 2, 3i i j . The vector R is decom-
posed into the position r of the projection of the same point on the

middle surface, plus a vector along n, and metrics in the shell is ob-
tained
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In Eq. (1) i=1,2; the Ai are named Lamé's parameters; the Ri are the
radii of curvature of the middle surface along the coordinates αi; the
mixed terms gij vanish since the αi are locally orthogonal. Metrics or-
thogonal to the middle surface is Cartesian.

Strain is the variation of metrics between the reference and the
present configuration. If this process involves small displacements with
respect to the characteristic lengths of the element, strain can be line-
arized; its components εij are, dropping independent variables from
notation,
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In Eq. (2) the εii are elongations of material fibres along the tangents to
the αi at the considered point, and the εij are shearing strains between
formerly orthogonal pairs of the same fibres.

By Love's hypotheses on thin shells, the displacement components
U U,1 2 along α α,1 2 (membrane displacements) are linear in α3, while the
transverse displacement U3 does not depend on α3; in addition, shearing
strains between the normal n and the middle surface are negligible, like
Euler-Bernoulli's hypotheses on slender beams. Then, the coefficients of
the linear terms in the membrane displacements are the components of
the rotation of the transverse fibres of the shell
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Replacing Eq. (3) into Eq. (2) yields the non-vanishing components
of linearized strain
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In Eq. (4), the terms independent of α3 are membrane characteristic
strains, while the terms linear in α3 are the transverse characteristics
strains

= +ε ε α κij ij ij
0

3 (5)

where: εij
0 are the elongation and the shearing strain at the projection of

the considered point on the middle surface; the κij are the curvature
increments of the middle surface. Henceforth, the variables α α,1 2, on
which εij

0 and κij depend, will be dropped from notation.
Introducing Eqs. (4), (5) into the homogeneous isotropic linear

elastic constitutive relations yields the stresses in the shell, by which
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