
Contents lists available at ScienceDirect

Thin-Walled Structures

journal homepage: www.elsevier.com/locate/tws

Full length article

Rotation-free isogeometric analysis of functionally graded thin plates
considering in-plane material inhomogeneity

Shuohui Yina,b,d,e,⁎, Tiantang Yub,⁎, Tinh Quoc Buic, Xuejun Zhenga,d,e, Gao Yib

a School of Mechanical Engineering, Xiangtan University, Xiangtan, Hunan 411105, PR China
b College of Mechanics and Materials, Hohai University, Nanjing 210098, PR China
c Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-W8-22, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
d Engineering Research Center of Complex Tracks Processing Technology and Equipment of Ministry of Education, Xiangtan University, Xiangtan 411105, PR China
e Key Laboratory of Welding Robot and Application Technology of Hunan Province, Xiangtan University, Xiangtan 411105, PR China

A R T I C L E I N F O

Keywords:
Isogeometric analysis
Functionally graded plates
In-plane inhomogeneity
Kirchhoff-Love theory

A B S T R A C T

We present a rotation free isogeometric analysis formulation based on Kirchhoff-Love theory, which aims to
address free vibration and buckling behaviors of functionally graded thin plates with in-plane material in-
homogeneity. For Kirchhoff-Love thin plate analysis, construction of C1 conforming finite element approxima-
tion is not straightforward, while isogeometric analysis with high-order continuity splines basis functions is
ideally suited for Kirchhoff-Love elements. We first explain the formulations and then provide verification of the
present method through numerical examples. Studies on convergence and comparison with reference solutions
are demonstrated to show the effectiveness and accuracy of the proposed method. Effects on natural frequencies,
critical buckling loads and mode shapes originated from the material inhomogeneity and boundary conditions
are numerically investigated.

1. Introduction

Functionally graded materials (FGM) are a special type of compo-
sites with continuous variation of material properties in spatial direc-
tions. As no material interfaces exist in FGM, the interfacial stress
concentration phenomenon which may lead to delamination or de-
bonding can be completely avoided. The FGMs thus have wide appli-
cations in many engineering areas including aerospace, transducers,
energy transform, biomedical engineering, optics [1].

A number of researchers paid attention to the investigation of FGM
structures (including beams, plates and shells) with properties graded
in the thickness direction [2–9]. It can be seen from the literature that
the static, dynamic, buckling and nonlinear response of FGM beams,
plates and shells has been studied extensively. For an overview of FGM
beam/plate/shells with material inhomogeneity along the thickness
direction the reader is referred to the article by Jha and Kant [10].
However, there are only a few investigations on the structural response
of FGM structures with material inhomogeneity along in-plane direc-
tion or bi-directions (in the thickness and the in-plane direction).
Nemat-Alla [11] used the volume fractions and rules of mixtures to
investigate the thermal stresses in FGM plates graded in x- and y- di-
rections. Lü et al. [12] proposed a semi-analytical solution based on
differential quadrature method for bi-directional FGM beams. It has

shown that the bi-directional FGM has higher capability to reduce
thermal stresses than that from conventional unidirectional FGM. By
employing Levy's type solution, Yu et al. [13] and Liu et al. [14] studied
the bending problem of a thin rectangular plate with in-plane stiffness
changing through a power form and the fundamental frequency of
plates with in-plane material inhomogeneity, respectively. Recently,
Amirpour et al. [15] derived an analytical solution for the deflection of
functionally graded thick plates with in-plane stiffness variation using
higher order shear deformation theory. Even though, analytical solu-
tions can provide benchmark results for assessing approximate theories,
only very limited cases can be solved. Therefore, for general cases the
numerical methods are necessary.

By employing the meshless local Petrov–Galerkin (MLPG), Qian and
Ching [16] studied the static and dynamic behavior of a bi-directional
functionally graded cantilever beam. And then, Qian and Batra [17]
extended the MLPG to optimize the fundamental frequency of bi-di-
rectional functionally graded plates. Goupee and Vel [18] used element
free Galerkin method to perform an optimized natural frequency of bi-
directional functionally graded beams. Uymaz et al. [19] studied the
fundamental frequency of plates with in-plane material inhomogeneity
by Ritz method. Xiang et al. [20] investigated the free vibration and the
mechanical buckling of plates with in-plane material inhomogeneity
using a three dimensional consistent approach based on the scaled
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boundary finite element method. By employing the Hermite radial basis
collocation method, Chu et al. [21,22] studied the free vibration and
buckling analysis of functionally graded thin plates with in-plane ma-
terial inhomogeneity.

Considering Kirchhoff thin plate model, it is not trivial to procure C1

conforming finite element approximation in FEM. In recent years, iso-
geometric analysis (IGA), e.g., see [23], has attracted considerable at-
tentions for no need of meshing, exact geometry representation, higher-
order continuity and simple mesh refinement. In IGA, since the high
order continuity NURBS are used as basis functions for analysis, The C1

continuity requirement of Kirchhoff-Love is easily to be handled
without additional efforts. Based on the Kirchhoff-Love theory, Kiendl
et al. [24] initially derived a rotation free isogeometric shell formula-
tion, and fully developed for multiple NURBS patches using the bending
strip method [25]. Later, the rotation-free isogeometric shell element
was extended to large deformation [26], free vibration and buckling
analysis of laminated plates [27] and functionally graded plates [28],
cloth simulation [29]. Investigated in the previous works, it exhibits
that the rotation-free isogeometric plate/shell elements can attain very
good accuracy and are efficient for thin plate and shell structures. To
the best of the authors’ knowledge, no computational approach in terms
of the framework of IGA and Kirchhoff-Love has been elaborated to
analyze FGM plates with in-plane material inhomogeneity. Thus, in this
paper, rotation free isogeometric analysis based on Kirchhoff-Love
theory is introduced for the free vibration and buckling analysis of FGM
plates with in-plane material inhomogeneity.

This paper is organized as follow. The FGM thin plates with in-plane
material inhomogeneity and governing equations based on Kirchhoff-
Love are discussed in Section 2. In Section 3, NURBS basis function and
rotation free isogeometric plate formulation for free vibration and
buckling analysis are presented. Several numerical examples are given
in Section 4, followed by concluding remarks in the last section.

Fig. 1. Variation of rigidity D with different gradient index n.

Fig. 2. Quadratic B-spline basis functions.

Table 1
Normalized frequencies of FGM square plate with parameter γ in different boundary conditions.

(a)SSSS

γ Method Number of control points Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

0 IGA 7 × 7 19.7405 49.5295 49.5295 79.1989 101.2744 101.2744
9 × 9 19.7381 49.3705 49.3705 78.9734 99.1659 99.1659
13 × 13 19.7377 49.3416 49.3416 78.9356 98.7080 98.7080

Analytical [21] 19.7392 49.3480 49.3480 78.9568 98.6960 98.6960
HRBCM [21] 19.6632 49.3620 49.3620 78.9490 98.8862 98.8999

2 IGA 7 × 7 19.9004 49.9071 49.9643 79.6786 101.6802 102.1944
9 × 9 19.8944 49.7446 49.7642 79.4088 99.5731 99.7647
13 × 13 19.8932 49.7149 49.7291 79.3636 99.1156 99.2734

Analytical [21] 19.8948 49.7215 49.7350 79.3844 99.1042 99.2587
HRBCM [21] 19.9094 49.7151 49.7459 79.3868 99.2417 100.6515

(b)SCSC

γ Method Number of control points Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

0 IGA 7 × 7 28.9843 55.0111 70.2747 95.5281 104.9449 133.1751
9 × 9 28.9555 54.7863 69.4584 94.7184 102.7328 130.5936
13 × 13 28.9492 54.7383 69.3274 94.5734 102.2343 129.1807

Analytical [21] 28.9509 54.7431 69.3270 94.5853 102.2160 129.0960
HRBCM [21] 28.9445 54.8496 69.3869 94.7423 102.4649 129.0501

2 IGA 7 × 7 29.5994 55.5724 71.2765 96.4674 105.4498 135.6784
9 × 9 29.5292 55.3044 70.2226 95.4153 103.2041 131.5394
13 × 13 29.5141 55.2460 70.0517 95.2237 102.6962 129.9925

Analytical [21] 29.5147 55.2498 70.0462 95.2294 102.6770 129.8920
HRBCM [21] 29.518 55.3641 70.1023 95.3861 103.3145 130.2347
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