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A B S T R A C T

In order to solve the inconsistency problem of the theoretical solutions of critical buckling temperature rise for
thin cylindrical shells reported in the existing literatures, a first attempt was made in the present study to
perform a derivation process on the critical internal force, thermal stress and critical buckling temperature rise
for the rectangular thin plate and thin cylindrical shell based on small deformation theory and the Donnell form
of the nonlinear equilibrium equations, respectively. Thereafter, the theoretical solutions of the thermal stresses
under different boundary conditions and temperature rise variations were determined. The results show that the
theoretical solutions of the internal force, thermal stress and critical buckling temperature rise are in good
agreement with the numerical results. Finally, the reason leading to the inconsistency of the theoretical solution
of the critical buckling temperature rise was elucidated in detail.

1. Introduction

As a general engineering structure, plates and shells have been
widely applied into the aerospace, petrochemical, nuclear energy and
other industrial fields [1,2]. For ensuring the safety of these structures,
it is essential to precisely calculate their strength, stiffness and stability.
Recently, it has been arisen many scholars' concern on the thermal
buckling behavior of thin plates and shells under thermal environ-
ments, such as high temperature storage tank [3,4], conical shell [5],
clad steel with coating [6] and railway track [7] etc.

For the thin cylindrical shell subjected to different temperature
loads, Ghorbanpour [8] determined the theoretical solution of its cri-
tical buckling temperature rise based on the Donnell form of the non-
linear equilibrium equations. Similarly, the theoretical critical buckling
temperature rise of the orthotropic laminated cylindrical shell was
solved and the influence of length-to-radius ratio on the critical buck-
ling temperature rise was discussed by Eslami and Javaheri [9]. For the
composite laminated spherical shell, Darvizeh et al. [10] studied the
relation between the number of buckling wave and the thermal strain
under different thickness-to-radius ratios and the ply orientation angles
under the uniform and the linear temperature load along the wall
thickness based on the semi-analytical finite element (FE) method. For
the functionally graded material (FGM) plates and shells which are
mainly used in aerospace and nuclear energy industries [11–13], Eslami
et al. [14], Javaheri and Eslami [15], Wu et al. [16] and Shahsiah et al.

[17–19] derived the theoretical solutions of the critical buckling tem-
perature rise of the rectangular plate and the cylindrical shell. In ad-
dition, the theoretical solution of the critical buckling temperature rise
for the imperfect cylindrical shell was given by Eslami and Shahsiah
[20] based on Wan-Donnell model [21].

However, a large amount of the above-mentioned work has mainly
focused on the theoretical derivation, but little work has been done on
verification of the correctness of the theoretical results. In addition, the
present authors found out that there were some differences among
different theoretical solutions. For example, the critical buckling tem-
perature rise was written as ΔTcr = 0.42h/(αR) in the Refs. [8,14,17], it
was regarded as ΔTcr = 0.61h/(αR) in Ref. [16], and ΔTcr = 5.3h/(αR)
in Ref. [22], which will bring some ambiguities for other researchers.
Authors [23,24] also demonstrated that the buckling problems are
strongly dependent on the constraint condition. However, the current
achievements mostly concern the influence of the constraint condition
on the buckling behavior of these structures subjected to the mechan-
ical loads, but the study on the thermal buckling problem is not covered
so much. In order to clarify the inconsistency problem of the theoretical
solution, a first attempt has been made in this work for deriving the
theoretical solutions of the critical buckling temperature rise for the
rectangular thin plate and thin cylindrical shell based on small de-
formation theory and the Donnell form of the nonlinear equilibrium
equations, respectively. Moreover, the difference of the boundary
condition was discussed since they have great effect on the critical
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value of the buckling behavior. In addition, other work has been fo-
cused on verifying the correctness of the internal force and the thermal
stress as well as the critical buckling temperature rise based on the FE
method.

2. Theoretical derivation of internal force, thermal stress and
critical temperature rise

Generally, the theoretical derivation of mechanical behavior of the
thin shell is based on a thin plate. However, it can lead to some errors
due to the difference between the shell and the plate. For clarifying the
inconsistency problem of the critical buckling temperature rise in ex-
isting literatures [8,14,16,17,22], the theoretical derivation process of
the thin plate and shell are presented in next sections.

In addition, the procedure to obtain the critical buckling tempera-
ture rise is executed in the following. The critical internal force was
firstly derived according to the equilibrium equations, and the thermal
stress and internal force were then obtained based on the constitutive
equations. Finally, the critical buckling temperature rise was solved by
integrating the internal force, thermal stress and buckling waveform.
Thus, the internal force, thermal stress, and critical buckling tempera-
ture rise were derived one by one. Note that the influence of the tem-
perature on the material properties was ignored in this work by
adopting the same assumption reported in existing literatures [14,16],
which indicated that Young's modulus (E), the coefficient of thermal
expansion (α) and the Poisson's ratio (μ) were considered as constants.

2.1. Theoretical solution of the critical internal force

2.1.1. Rectangular plate
For the uniform thick rectangular thin plate with four edges simply

supported, the equilibrium equation [21] is given as

+ + = + +D w w w N w N w N w( 2 ) 2xxxx xxyy yyyy x xx y yy xy xy, , , 0 , 0 , 0 , (1)

where D = Eh3/[12(1-μ2)], Nx0, Ny0 and Nxy0 are the internal forces
along the x, y, xy directions, respectively. And (,) indicates a partial
derivative.

If the temperature gradient only distributes along the thickness di-
rection of the plate, thus Nxy0 = 0. Meanwhile, to set Nx0 = -Px, Ny0 =
-kPx, where Px is the inverse value of Nx0, and k is equal to the ratio
between Nx0 and Ny0. Therefore, the equilibrium equation Eq. (1)

becomes

+ + = − +D w w w P w kw( 2 ) ( )xxxx xxyy yyyy x xx yy, , , , , (2)

Defining the expression of the deflection w as
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where Am np p is the coefficient to be determined. mp and np denote the
half wave numbers in the x, y directions at the occurrence of the
thermal buckling, respectively.

Substituting Eq. (3) into Eq. (2) and with simplification
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Eq. (4) is always established before the thermal buckling occurs.
Once the buckling takes place, the critical internal force of the plate is
obtained in the following
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2.1.2. Cylindrical shell
For the cylindrical thin shell with a uniform wall thickness, the

normal strains in the x (axial) and θ (circumferential) directions and the
shear strain in the xθ direction are [17]
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where z denotes the radial variable with the origin point at the middle
surface of the shell, the coordinate system of the thin shell is shown in
Fig. 1.

Based on the assumption of the Sanders [21], the relations between
the deflections and the strains on the middle surface of the thin cy-
lindrical shell are

Nomenclature

E Young's modulus
L length of the shell
M internal moment per unit length
N internal force per unit length
P inverse value of N
R radius of the shell
ΔT environmental temperature rise
ΔTcr critical buckling temperature rise
a length of the plate
b width of the plate
h thickness of the plate or shell
mp half wave number of plate in x direction
ms axial half wave number of the shell
np half wave number of the plate in y direction
ns circumferential full wave number of the shell
u axial deflection of the shell
v circumferential deflection of the shell
w normal deflection of plate or radial deflections of the shell
z radial variable of the shell
α coefficient of thermal expansion

β rotational angle of the shell
γ shear strain
ε normal strain
κ curvatures of the shell
μ Poisson's ratio
σ normal stress
τ shear stress
A, B, C, k, λ constant coefficients

Subscript

m middle surface of the shell
p plate
s shell
x X (length) direction of the plate or axial direction of shell
y Y (width) direction of the plate
θ circumferential direction of the shell
0 initial state critical equilibrium state of stability
1 instability state (buckling state) or the direction of the

plate and shell
2 the direction of the plate and shell
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