ELSEVIER

Contents lists available at ScienceDirect

Thin-Walled Structures

journal homepage: www.elsevier.com/locate/tws

CrossMark

Full length article

Fatigue design of CFRP strengthened steel members

Lili Hu^a, Peng Feng^{a,*}, Xiao-Ling Zhao^b

^b Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia

ARTICLE INFO

Keywords: Carbon fiber reinforced polymer Fatigue design Steel Classification method Fracture mechanics Stress intensity factor

ABSTRACT

Fatigue failure is brittle and sudden and is one of the main problems with steel members and connections. Carbon fiber reinforced polymer (CFRP) sheets and laminates have been shown to be effective and practical for strengthening steel under fatigue loading regardless of the existence of initial cracks. Many studies have examined the fatigue behaviors of CFRP strengthened steel, but fatigue design guides or available programs for designers and engineers are limited. Thus, based on existing design codes and guidance for pure steel under fatigue loading (e.g., Design Guide for Circular and Rectangular Hollow Section Welded Joints under Fatigue Loading and Recommendations for Fatigue Design of Welded Joints and Components), this paper proposes fatigue design guides and programs for CFRP strengthened steel structures. First, for steel without initial fatigue cracks, Classification method is adopted along with a related calculation method for obtaining the reduced stress range of steel after strengthening. Then, a classification table for hybrid CFRP-steel members is given to illustrate where to glue CFRP sheets or laminates and the correct fiber orientation. Second, for steel with initial fatigue cracks, fracture mechanics are adopted to obtain the reduced stress range. This paper considers debonding at the crack tip using the finite element method (FEM) and introduces a coefficient d to enlarge the range of the stress intensity factor (SIF). Then, a program called "EasyFatigueforFSS" (Easy Fatigue design for FRP Strengthened Steel) is developed to calculate the available life or allowable stress. Finally, typical design examples are given for reference.

1. Introduction

Fatigue failure is one of the most serious failure types for steel structures and may result in casualties and considerable economic loss [1]. Fatigue failure is most likely to occur in steel members and connections, such as crane steel beams and welded connections of beams and columns, under cyclic tensile loading. When the fatigue loading of an old structure increases or when some short cracks develop in the structure, steps must be taken to prevent fatigue failure. Retrofitting existing structures instead of replacing them is the more economical and practical solution [2]. Therefore, many studies have focused on the feasibility and efficiency of different strengthening methods, and many scholars have shown that carbon fiber reinforced polymer (CFRP) is effective and practical for reinforcing steel members under fatigue. Liu et al. [3] explained the mechanism through which CFRP increases the fatigue life of cracked steel plates and then proposed a method based on fracture mechanics to predict the fatigue life. Nakamura et al. [4] used CFRP to reinforce welded web gusset joints with fatigue cracks and found that the increase in the fatigue life was significant. Yang et al. [5] quantified the behavior of the bonded steel-fiber reinforced polymer

(FRP) interface and established a foundation for analyzing the behavior of steel-FRP hybrid plates under fatigue loading and static loading. Feng et al. [6] studied the thermal effects on the fatigue behavior of cracked steel plates strengthened by CFRP sheets and found that at temperatures ranging from -40 °C to 60 °C, the fatigue lives of the strengthened samples were 2.0-3.4 times greater than those of the unstrengthened ones. Yu et al. [7,8] used the boundary element method to analyze edge-cracked steel plates strengthened with CFRP laminates. Their results indicated that CFRP overlays can effectively slow crack growth and extend the fatigue life of edge-cracked steel plates regardless of the initial damage. Hu et al. [9] analyzed the fatigue behavior of CFRP strengthened high-strength steel. Their study showed that CFRP strengthening can effectively increase the fatigue life (1.3-3.1 times) for all specimens except for those under very high stress range. Other studies have also shown that CFRP can be used to strengthen metal columns and girders [10-14]. Recent studies have focused on new aspects related to this field. Zheng et al. [15] studied debonding at the crack tip of a CFRP strengthened steel plate by digital image correlation technology. Wang et al. [16] also applied this technology to study the bond behavior between CFRP plates and steel substrates under fatigue

E-mail address: fengpeng@tsinghua.edu.cn (P. Feng).

^{*} Corresponding author.

L. Hu et al. Thin-Walled Structures 119 (2017) 482–498

Nomenclature N			number of fatigue cycles calculated using SIF
		$N_{\rm a}$	available fatigue life/cycles
а	half crack length	$N_{ m p}$	predicted fatigue life/cycles of unstrengthened steel
$a_{\rm i}$	initial half crack length	$N_{ m p,s}$	predicted fatigue life/cycles of strengthened steel without
$a_{ m d}$	debonding half crack length, after which micro-debonding		considering debonding
	at the crack tip occurs.	$N_{ m p,s,d}$	predicted fatigue life/cycles of strengthened steel con-
$a_{ m f}$	final half crack length		sidering debonding
$b_{ m a}$	width of the adhesive between the steel and the FRP	m	material parameter
	composite	R	stress ratio, which is the ratio of σ_{\min} to σ_{\max}
$b_{ m c}$	width of the FRP composite consisting of FRP fiber and	R_{p}	size of the plastic zone
C	matched adhesive	$r^{^{\mathrm{p}}}$	distance from the calculated microelement to the crack tip
$b_{ m f}$	width of the FRP fiber	S_{a}	axial stiffness of the adhesive
$b_{\rm s}$	width of the steel	$S_{\rm c}$	axial stiffness of the FRP composite
$b_{ m d}$	semimajor axis of the ellipse (debonding area)	$S_{ m s}$	axial stiffness of steel
	semiminor axis of the ellipse (debonding area)	S_i	ith nominal stress range
$rac{c_{ m d}}{C}$			nominal stress range at 2×10^6 cycles, called the detail
	material parameter	$\mathcal{S}_{ ext{DC}}$	
d	ratio of the SIF considering the debonding area at the	c	category
	crack tip to that without considering the debonding area	S_{CA}	nominal stress range at 5×10^6 cycles, called the constant
_	at the crack tip	_	amplitude fatigue limit
D	fatigue damage accumulation	S_{CO}	nominal stress range at 10 ⁸ cycles, called the cut-off limit
$E_{\rm a}$	elastic modulus of the adhesive between the steel and the	$S_{\text{without CFRP}}$ nominal stress range of unstrengthened steel	
	FRP composite	$S_{ m without}$	$_{\text{CFRP},i}$ nominal stress range of unstrengthened steel in load
E_{c}	elastic modulus of the FRP composite consisting of FRP		spectrum block i
	fiber and matched adhesive		RP nominal stress range of strengthened steel
$E_{ m f}$	elastic modulus of the FRP fiber	$S_{ m with\ CFF}$	$_{\mathrm{RP},i}$ nominal stress range of strengthened steel in load spec-
E_{s}	elastic modulus of steel		trum block i
$f_{ m y}$	yield strength of steel	$t_{\rm a}$	thickness of adhesive between the steel and the FRP
$f_{ m d}$	design strength of steel		composite
$F_{ m d}$	static design force of steel	$t_{\rm c}$	thickness of the FRP composite consisting of FRP fiber and
$G_{\rm a}$	shear modulus of adhesive	· ·	matched adhesive
$G_{\rm c}$	shear modulus of FRP composite	$t_{ m f}$	thickness of the FRP fiber
k_i	factor between the strain in the ith layer of the fiber and	$t_{\rm s}$	thickness of the steel
	the strain of the steel	β	damage ratio
K	stress intensity factor (SIF)	γMf	partial safety factor
K_{\max}	maximum SIF based on the maximum stress in a stress	σ	nominal stress of the steel plate
rimax	range	$\sigma_{\rm a}$	stress of the adhesive from FEM
K_{\min}	minimum SIF based on the minimum stress in a stress	$\sigma_{ m d}$	nominal stress shared by the steel under $F_{\rm d}$
Min	range		maximum stress in a stress range
ΔK	range of SIF, which equals K_{max} minus K_{min}	σ_{\max}	minimum stress in a stress range
	effective range of SIF	σ_{\min}	
ΔK_{eff}	ě	$\sigma_{ m max,d}$	maximum nominal stress shared by steel under F_d
$\Delta K_{\mathrm{eff,s}}$	effective range of SIF after strengthening	$\sigma_{ m without\ CFRP}$ nominal stress of unstrengthened steel	
$\Delta K_{ m th}$	threshold value of range of SIF		RP nominal stress of strengthened steel
$K_{\mathrm{with,d}}$	SIF under any static σ considering the debonding area at	Δσ	nominal stress range, which equals σ_{\max} minus σ_{\min}
	the crack tip	$[\Delta\sigma]$	allowable nominal stress range
$K_{\text{no,d}}$	SIF under any static σ without considering the debonding		t CFRP nominal stress range of unstrengthened steel
	area at the crack tip	$\Delta\sigma_{ m with C}$	FRP nominal stress range of strengthened steel
$K_{\text{max,with,}}$	$_{ m d}$ range of SIF under any static σ considering the debonding	$\sigma_{\rm x}$	stress of the microelement in the x direction
	area at the crack tip	$\sigma_{ m y}$	stress of the microelement in the y direction
$K_{\text{max,no,d}}$	range of SIF under any static σ without considering the	$\sigma_{\rm z}$	stress of the microelement in the z direction
	debonding area at the crack tip	ε_{a}	strain of the adhesive from FEM
$K_{ m debond}$	SIF when micro-debonding occurs	$\epsilon_{ m a,max}$	maximum strain of the adhesive, which refers to the ulti-
$l_{\rm c}$	length of the FRP composite		mate strain of the adhesive
$l_{\rm s}$	length of the steel plate	$\boldsymbol{\theta}$	angle shown in Fig. 3
n	number of CFRP layers	φ	capacity factor in AS 4100
n_i	number of fatigue cycles under the design load stress	$v_{\rm s}$	Poisson's ratio of steel
	range in load spectrum block i	$\nu_{\rm c}$	Poisson's ratio of FRP composite
N_i	number of fatigue cycles calculated using S_i	$v_{\rm a}$	Poisson's ratio of adhesive
ı		· a	

loading, which is a critical and fundamental issue. Zheng et al. [17] applied a thermally activated shape memory alloy to achieve the prestressing of the CFRP, whose use is more efficient than that of CFRP without pre-stress. Aljabar et al. [18] analyzed a case of mixed tension and shear loading and found a shifting phenomenon in terms of crack propagation. Borrie et al. [19] conducted a large number of fatigue tests

on CFRP patched pre-cracked steel plates after extreme environmental exposure and proved that CFRP reinforcement can be adapted even under extreme exposure scenarios. Many other studies focused on the repair of steel girders and bridges. For example, Yue et al. [20] studied the fatigue performance of CFRP reinforced steel crane girders and concluded that the CFRP layers can perfectly restrain the development

Download English Version:

https://daneshyari.com/en/article/4928513

Download Persian Version:

https://daneshyari.com/article/4928513

<u>Daneshyari.com</u>