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A B S T R A C T

The thermal buckling of the shells is among the popular topics in solid mechanics. To date, most studies adopt
the linear constitutive equation method. However, the non-linear temperature is important when studying
thermal buckling. In this study, the non-linear constitutive equation of isotropic materials is derived using the
tensor method to obtain the stability equation of axisymmetric spherical shells. Moreover, quadratic non-linear
constitutive equations are applied to study the thermal buckling of spherical shells, and the heat stability
equations of spherical shells expressed by displacements are obtained. Considering the common function of
external pressure and temperature, the potential energy function of the spherical shell expressed in displacement
is obtained using the principle of least potential energy. Moreover, the Ritz method is used to study the thermal
buckling of simple, supported shells. The changing trend of the critical pressure caused by the temperature
change of the thin spherical shells is analyzed, as well as the influence of the temperature nonlinearity on the
critical pressure.

1. Introduction

In recent years, the thermal buckling of plates and shells has
increasingly attracted attention. Several references exist on the thermal
buckling of cylindrical shells. In 1973, Gupta and Wang [1] studied
thermal buckling of orthotropic circular cylindrical shells under uni-
form temperature fields; they considered the expansion coefficient to
obtain the critical temperature using the Ritz method. In 1989, based
on the energy method, Wilcox [2] found the Donnell shell theory and
obtained the critical temperature of simple supported cylindrical shells,
using the Galerkin method of potential energy principle. During
1996–2001, Eslami [3–5] studied buckling and thermal buckling of
elastic, composite, and imperfect cylindrical shells. In 2002, Wang [6]
analyzed non-linear thermal buckling of laminated composite cylind-
rical shells with local delamination. In 2003, Shahsiah [7] studied the
buckling analysis of functionally graded cylindrical shells subjected to
different types of thermal loads in simple, supported boundary condi-
tions, and Shahsiah and Eslami [8] analyzed the thermal buckling of the
functionally graded cylindrical shells using the classical and improved
mixed stability equations. In 2005, Wu [9] discussed the thermal
buckling of cylindrical shells made of functionally graded materials

(FGM) based on the Donnell shell theory, as well as the equilibrium and
stability equations of cylindrical shells under thermal loads. In 2008,
Shariyat [10] studied the temperature dependence of the dynamic
thermal buckling of functionally graded composite cylindrical shells
under combined axial and external pressures. In 2012, Hui-shen [11]
analyzed thermal and posted buckling of carbon nanotube-reinforced
composite cylindrical shells with FGM. From 2014–2015, Duc [12,13]
studied non-linear buckling of imperfect and eccentrically stiffened
metal-ceramic-metal S-FGM and thin circular cylindrical shells with
temperature-dependent properties in thermal environments.

Conical shells have attracted the attention of scholars. In 2006,
Bhangale [14] studied linear thermoelastic buckling and free vibration
behavior of functionally graded, truncated conical shells. In 2007,
Sofiyev [15] analyzed the thermal elastic stability of functionally
graded, truncated conical shells. In 2008, based on the Sander non-
linear shell theory, Naj [16] studied thermal and mechanical instabil-
ities of functionally graded, truncated conical shells. In 2013, Torabi
[17] analyzed the linear thermal buckling of truncated hybrid FGM
conical shells. The stability equation was established using the mini-
mum potential energy criterion, and the critical buckling temperature
difference was obtained using the Galerkin method. In 2015, Sofiyev
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[18–20] analyzed the thermal buckling of functionally graded conical
shells in depth, and Seidi [21] studied temperature-dependent buckling
analysis of the sandwich-truncated conical shells using FG facesheets.

Moreover, scholars were concerned about the thermal buckling of
spherical shells. In 2001, Eslami [22] studied the thermal buckling of
thin spherical shells. In 2006, Shahsiah and Eslami [23] described the
thermal instability of functionally graded spherical, shallow shells
based on the Mushtari-Vlasov-Donnell theory, and Shahsiah [24]
studied the stability of thermal buckling of the isotropic, shallow
spherical shells under three different temperature loads. In 2010,
Eslami [25] studied the thermal buckling of FGM and obtained the
critical temperature of the shallow spherical shells under uniform
external pressure, temperature, external pressure, and temperature. In
2010, Xu [26] studied the non-linear stability of double-deck reticu-
lated circular shallow spherical shells. In 2011, Mao [27] studied the
non-linear dynamic response for the functionally graded shallow
spherical shells under low-velocity impact in a thermal environment.
In 2012, Sabzikar Boroujerdy [28] studied the thermal buckling of
functionally graded shallow spherical shells and the critical tempera-
ture of shallow spherical shells with uniform temperature and three
kinds of temperature loads along the radial uniform variation and
directions. From 2014–2016, Anh and Duc [29–32] studied the non-
linear stability of the annular and shallow spherical shells. The elastic
foundation of the FGM under external pressure and temperature was
analyzed.

Thermal buckling is among the popular issues in solid mechanics.
The non-linear temperature is important in studying thermal buckling.
In this study, the non-linear constitutive equation of isotropic materials
was derived using the tensor method, and the stability equation of
axisymmetric spherical shells was obtained. The quadratic non-linear
constitutive equations were applied in studying the thermal buckling of
spherical shells, and the heat stability equations of spherical shells
expressed by displacements were obtained. Considering the common
function of external pressure and temperature through the principle of
least potential energy, the potential energy function of the spherical
shell expressed in displacement was obtained, and the Ritz method was
used to study the thermal buckling of simple, supported shells. The
changing trend of the critical pressure caused by the temperature
change of the thin spherical shells was analyzed, and the influence of
the temperature nonlinearity on the critical pressure is analyzed.

2. Basic equation

Defect-free, thin spherical shells are studied, as shown in Figs. 1 and
2. The displacements of the normal direction along the middle plane

and radial direction are w and θ, respectively.

2.1. Geometric equations

Due to the axial symmetry in the shell, for each point, the two
displacements along the meridian direction and the normal direction
are defined as u and w, whereas v=0. In the spherical coordinate
system, the radius of the curvature, R1=R2, and the Lame coefficients
of spherical shells are:

H R H R φ H= , = sin , = 11 2 3

The strain in the spherical shells can be realized at any point in the
spherical coordinate system [37]. With definition φφ φ θθ θ= , = :
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is obtained,
where

= ( )*
φ

∂( )
∂ . The following equations use the same tag.

2.2. Thermal constitutive equation of spherical shells

Considering only the cases of the initial value and increment of
temperature, the constitutive equation of the non-linear thermal stress
of isotropic materials was studied [36] (Figs. 2–4).

Fig. 1. Spherical coordinate system.

Fig. 2. Load diagram of thin spherical shell.
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Fig. 3. Comparison of dimensionless upper buckling loads for isotropic thin shallow
spherical shells.
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