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A B S T R A C T

The design of cold-formed steel columns must consider flexural buckling, torsional buckling, and flexural-
torsional buckling. The American Iron and Steel Institute incorporated equations for the critical elastic buckling
loads corresponding to these failure modes in the North American Specification for the Design of Cold-Formed
Steel Members. These equations were originally developed for columns with consistent boundary conditions for
all three modes. However it is common in practice to have different unbraced lengths for major axis flexure,
minor axis flexure, and torsion. Furthermore, it is common for certain members to be oriented such that
intermediate bracing restraint directions do not align with the principal axes. This paper investigates and
develops a general formulation of the column buckling equation to incorporate unequal unbraced lengths and
non-principal axes.

1. Introduction

Cold-formed steel structural members are often used in framing
configurations where intermediate bracing provides a reduced un-
braced length for one direction and twisting. A common example is a
Z purlin as shown in Fig. 1. Since a Z shape is point-symmetric with the
shear center coinciding with the centroid, there is no interaction
between torsional buckling and flexural buckling. Therefore the buck-
ling limit is simply the smaller of the two buckling loads.

The flexural buckling load is normally calculated using the conven-
tional P π EI L= /2 2, where I is the minor principal axis moment of inertia.
But where the bracing directions do not coincide with the principal
axes, the impact of having different unbraced lengths is not evident.
The coupling of the two flexural modes requires further investigation.

Similarly, a singly-symmetric C shape is commonly used with
intermediate bracing to reduce the unbraced length for minor axis
buckling and torsional buckling. Since the shear center for a C shape
does not coincide with the centroid, interaction between flexural
buckling and torsional buckling occurs. The unbraced lengths for
flexure and torsion can be different, therefore complicating the inter-
action between them.

The column buckling equations used in cold-formed steel design
today were investigated by Timoshenko et al. [2] among others. They
were further studied by Chajes et al. [3] for development of the design
criteria in the AISI Specification [1]. These buckling equations were
developed using principal axes and equal unbraced lengths for all
modes. This paper expands on their excellent work to consider the more
general case of unequal unbraced lengths and non-principal axes.
Numerous symbols are used in this investigation which are defined

Section 7.

2. Development

2.1. General case

The development of the critical buckling load for a general cold-
formed steel shape must consider a combination of flexural buckling
and torsional buckling. Fig. 2 represents an arbitrary non-symmetric
cross section oriented to centroidal x and y axes which represent the
two orthogonal directions of translational bracing. These axes need not
be the principal axes.

The application of axial load P at the centroid C with sufficient
magnitude will produce buckling where the cross-section displaces u
and v in the x and y directions, and rotates about its shear center by
angle ϕ. The centroid translates from C to C1, and the shear center
translates from O to O1. The rotation causes the centroid to move to its
final position C2.

To maintain equilibrium, the displaced cross-section develops
moments about the x and y axes, which are the product of the axial
load P and the x and y displacements from C to C2, as shown in Eqs. (1)
and (2).

M P v x ϕ= − ( − )x o (1)

M P u y ϕ= − ( + )y o (2)

The stiffness relationship between moment and deflection for non-
principal axes must consider unsymmetrical bending. The general form
of this relationship is a pair of differential Eqs. (3) and (4) as developed
by Timoshenko [2] and others, which involves the product of inertia Ixy.
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Equating these to the moments defined by the buckling equilibrium
relationships in Eqs. (1) and (2) provides two differential equations
with three unknowns: u, v, and ϕ.

M EI v EI u P v x ϕ= ′ + ′ = − ( − )x x xy o
′ ′ (3)

M EI u EI v P u y ϕ= ′ + ′ = − ( + )y y xy o
′ ′ (4)

A third relationship is required involving torsion, which was
investigated by Timoshenko [2]. Similar to the flexure equations, the
stiffness relationship is equated to the buckling equilibrium relation-
ship, both in terms of the torsion per unit length Tz, as shown in Eq. (5).
Although this torsion development was presented using principal x and
y axes, no assumptions were made that required principal axes. This
relationship is applicable to any section orientation.

T EC ϕ GJϕ P x v y u Pr ϕ= ′ − ′ = ( ′ − ′ ) − ′z w o o o
′′′ ′ ′ ′ 2 ′ (5)

The solution to these three simultaneous differential equations is
developed here using a pinned end column of length L, and subse-
quently generalized for other cases. Thus we will assign the following
boundary conditions: u = v = ϕ =0 and u" = v" = ϕ" =0, at z=0 and
z= L.

The solution for u, v, and ϕ are therefore in the forms shown in Eq.
(6). The first buckling mode corresponds to one half-wavelength, where
n1 = n2 = n3 =1. To accommodate different unbraced lengths, greater
values of n may be used to produce unbraced lengths of L/n, and the
nodes where the displacements are zero would correspond to the brace
points.
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As illustrated in Fig. 3, we will let Ly = L/n1, Lx = L/n2, and Lt = L/
n3. It should be noted that any set of unbraced lengths can be
accommodated mathematically by defining an imaginary column
whose length is a common multiple of the three unbraced lengths, or
L = LCM(Lx, Ly, Lt).

For the general case using non-principal axes, the flexural modes are
coupled such that they have the same half-wavelength and buckling
occurs about a non-orthogonal axis. The bracing directions do not align
with the buckling direction, but only a small component of a transla-
tional restraint vector is required to create an inflection point.
Therefore the unbraced flexural span is the distance between brace
points, regardless of bracing direction.

For the purpose of this investigation, the coupled flexural mode
solution is assumed to have a consistent half-wavelength throughout
the column. This requires Lx to be a multiple of Ly or vice-versa, and
therefore the half-wavelength is the smaller of Lx and Ly. Defining Lf as
the flexural half-wavelength, the displacement functions and their
derivatives are then defined as follows:
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Substituting these forms into the three differential Eqs. (3), (4), and
(5) produces the following set of simultaneous equations:

Nomenclature

A Area of cross-section
Cw Torsional warping constant
E Modulus of elasticity
G Shear modulus of elasticity
J Saint-Venant torsion constant
Ix, Iy Moments of inertia about x and y axes
Ixy Product of inertia about x and y axes
I2 Moment of inertia about minor principal axis
Kf Effective length factor for coupled flexural buckling
Kx, Ky, Kt Effective length factors for buckling about x axis, y axis,

and torsion
L Column length
Lf Half-wavelength for coupled flexural buckling (smaller of

Lx and Ly)
Lx, Ly, Lt Unbraced lengths for buckling about x axis, y axis, and

torsion
Mx, My Moments about x and y axes
P Critical elastic buckling axial load
Px, Py, Pt Critical axial loads for elastic buckling about x axis, y axis,

and torsion
Pfx, Pfy Coupled critical axial loads for flexural buckling about the

x and y axes
Pfxy Coupled critical axial load component attributed to un-

symmetrical bending
ro Polar radius of gyration about shear center
rx, ry Radius of gyration about x and y axes
r2 Radius of gyration about minor principal axis
Tz Torsion per unit length of column
u, v, ϕ Buckling displacements in the x and y directions, and

angle of twist
u", v", ϕ" Second derivative of buckling displacements with respect

to z
u"", v"", ϕ"" Fourth derivative of buckling displacements with respect

to z
x, y Orthogonal coordinate axes of cross-section corresponding

to bracing directions
xo, yo Coordinates of shear center relative to centroid of cross-

section
z Longitudinal axis of column
α, β, γ, δ Dimensionless factors used in polynomial form of buckling

equation
σ Critical elastic buckling axial stress
σex, σey, σtCritical axial stress for elastic buckling about x axis, y axis,

and torsion
σfx, σfy Coupled critical axial stress for flexural buckling about the

x and y axes
σfxy Coupled critical axial stress component attributed to

unsymmetrical bending

Ly=Lt

Lx

Ly=Lt

Fig. 1. Typical bracing configuration where unbraced lengths are different.
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