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A B S T R A C T

Thin-walled sections under localised loading may lead to buckling of the sections. This paper briefly introduces
the development of the Finite Strip Method (FSM) for buckling analyses of thin-walled sections under localised
loading for general end boundary conditions. This method is benchmarked against the Finite Element Method
(FEM).

For different support and applied loading conditions, different functions are required for flexural and
membrane displacements. In Part 1- Pre-buckling described in the companion paper, the analysis provides the
computation of the stresses for use in the buckling analyses in this paper. Numerical examples of buckling
analyses of thin-walled sections under localised loading with different end boundary conditions are also given in
the paper in comparison with the FEM.

1. Introduction

Thin-walled plates and sections subjected to localised loading and
experiencing plate buckling have been studied over a long period by
numerous investigators who mainly focused on web plates of sections
under concentrated load. Two comprehensive investigations in this
research area were Khan and Walker [1] for the buckling of plates
under localised loading and Johansson and Lagerqvist [2] for the
resistance of plate edges under localised loading. In the application of
the Generalized Beam Theory (GBT), Natário et al. [3] further extended
investigations for beams under concentrated loading. The results for
plates, unlipped channel sections and I sections from the GBT have been
benchmarked against previous research and the Shell Finite Element
method (SFE).

The Finite Strip Method (FSM) developed by Cheung [4] is an
efficient method of analysis in comparison with the FEM. This method
is used extensively in the Direct Strength Method (DSM) of design of
cold-formed sections in the North American Specification for the Design
of Cold-Formed Steel Structural Members AISI S100-2012 [5] and the
Australian/New Zealand Standard AS/NZS 4600:2005 [6]. It is there-
fore essential to extend the FSM of buckling analysis to localised
loading. The FSM was applied in Chu et al. [7] and Bui [8] to the
buckling analysis of thin-walled sections under more general loading
conditions, where multiple series terms were used to capture the

modulation of the buckles. The limitation of these investigations is
that the transverse compression and shear are not included. Hancock
and Pham [9] applied the FSM to the buckling analysis of thin-walled
sections subjected to shear forces. More recently, Hancock and Pham
[10] have extended the FSM to the analysis of thin - walled sections
under localised loading for simply supported boundary condition using
multiple series terms. In the longitudinal direction, a pre-buckling
analysis was performed to compute stresses prior to the buckling
analysis using these stresses. Solution convergence with increasing
number of series terms was provided. However, in practice, cold-
formed members are connected together by welds or bolts so that the
end boundary conditions are expected to be different from simply
supported. Thus, it is necessary to extend this method to the analysis of
thin-walled sections under localised loading for general end boundary
conditions.

In this Part 2 – Buckling, the paper briefly introduces the functions
used to compute the stress distributions in the strips of the structural
member for different end boundary conditions as described in the
companion paper Part 1-Pre-buckling. In addition, the theory of the
FSM for buckling analysis of thin walled sections under localised
loading for general end boundary conditions is developed. Numerical
examples have been performed by the FSM built into the THIN-WALL-2
program developed by the authors [11]. The numerical solutions are
compared with those from the analyses by the Finite Element Method
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(FEM) on ABAQUS [12] to validate the accuracy including a conver-
gence study.

2. Strip buckling displacements

2.1. Flexural buckling displacement

An isometric view of flexural displacements of a strip is shown in
Fig. 3 of the companion paper Part 1 – Pre-buckling.

The flexural deformations w of a strip can be described by the
summation over μ series terms as:

∑w f y X x= ( ) ( )
m

μ

m m
=1

1 1
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where:

μ is the number of series terms of the harmonic longitudinal
function,
X x( )m1 is the function for longitudinal variation, as described in Part
1 - Pre-buckling
f y( )m1 is a polynomial function for transverse variation. This
function for the mth series term is given by:
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α{ }Fm is the vector polynomial coefficients for the mth series term which
depend on the nodal line flexural deformations of the strip,

α α α α α{ } = [ ]Fm Fm Fm Fm Fm
T

1 2 3 4 (3)

t, b and L are the strip thickness, width and length respectively.
The flexural deformations w can be written in matrix format:
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where:
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δ{ }Fm is the flexural displacement vector for nodal line displacements for
the mth series term

C[ ]F is the evaluation matrix of the flexural displacement functions
at the nodal lines, given in Appendix A.

In the computation of the flexural potential energy described later,
the derivatives of the flexural deformation are required. The derivatives
used are as follows:
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where Γ y b y b[ ] = [0 1 2( / ) 3( / ) ]FT
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2.2. Membrane buckling displacement

An isometric view of membrane displacements of a strip is shown in
Fig. 4 of the companion paper Part 1 – Pre-buckling.

The membrane deformations in the longitudinal and transverse
directions of a strip can be described by the summation over μ series
terms as:

∑v f y X x= ( ) ( )
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∑u f y X x= ( ) ( )
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where:

X x X x( )and ( )m m1 2 are the longitudinal variation functions for the
membrane transverse v and longitudinal u deformations respec-
tively, as described in Part 1 – Pre-buckling
f y f y( )and ( )vm um are the transverse variations. These functions for the
mth series term are given by:
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α{ }Mm is the vector of polynomial coefficients for the mth series term
which depend on the nodal line membrane deformations of the strips

α α α α α{ } = [ ]Mm Mm Mm Mm Mm
T

1 2 3 4 (11)

The membrane deformations of the strip can be written in matrix
format:
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where:

α C δ{ } = [ ] { }Mm M Mm
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δ{ }Mm is the vector of membrane displacement for the mth series term
C[ ]M is the evaluation matrix of the membrane displacement

functions at the nodal lines, given in Appendix A.
In the computation of the membrane potential energy described

later, the derivatives of the membrane deformations are required. The
derivatives used are as follows:
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3. Membrane stresses

3.1. Membrane stress calculation

The membrane stresses of a strip for the kth series term of the pre-
buckling analysis as in Part 1 – Pre-buckling are given by:

σ D{ } = [ ]{ ∈ }Mk M Mk (16)

where D[ ]M is the property matrix of membrane displacement, given in
Appendix A

{ ∈ }Mk is the membrane strain vector:

B α{ ∈ } = [ ]{ }Mk Mk Mk (17)

Hence:

σ D B α{ } = [ ][ ]{ }Mk M Mk Mk (18)
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