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A B S T R A C T

In the present work, the nonlinear thermoelectrical stability of perfect/imperfect circular size-dependent
functionally graded piezoelectric plates is studied according to modified couple stress theory. The second,
concurrent aim is to address snap-through phenomenon in the thermally preloaded plates due to concentrated/
uniform lateral loads. Ritz finite element method is implemented into virtual displacement principle to
construct the matrix representation of nonlinear governing equations. Under certain circumstances, bifurca-
tional instability may occur in which case a direct displacement control scheme is utilized. In other cases, the
response is unique and stable to which any standard load control strategy seems appropriate and thus Newton-
Raphson method is selected. Standard load control strategies, however, fail to trace nonlinear equilibrium paths
through limit points and path following methods must be employed in snap-through problems. Being more
popular among the existing path following solution methods, cylindrical arc-length method is adopted. Two
types of thermal loading as well as two cases of boundary conditions are considered. Moreover, various
parametric studies are conducted to assess the influence of involved parameters.

1. Introduction

Piezoelectric materials (PMs), standing as a novel class of materials,
are widely used due to their distinct properties so as to postpone
buckling or control shape [1,2]. The advantages of structures made of
PMs have necessitated more investigations on their behavior. Having
found a wide range of applications, functionally graded materials
(FGMs) are a new class of microscopically inhomogeneous composites
in which both compositional profile and properties vary smoothly in
one or more preferred direction(s). Many favorable performances in
engineering applications offered by FGMs such as high resistance to
large temperature gradients and reduction of stress concentration have
prompted more investigations on their behavior. On the basis of the
conventional continuum theory, static and dynamic characteristics of
FGM structures subjected to thermomechanical loads have been
studied in the past two decades. FGMs have recently attracted even
more attentions for their application in micro-electro-mechanical
systems [3–6], where microscale structures play a significant role. In
such scales, however, it is experimentally understood that a classical
treatment is no longer adequate due to a phenomenon often called size
effect. That is, discontinuities of materials manifest themselves in
structural behaviors. On the other hand, traditional laminated PMs
suffer from several disadvantages such as stress concentration near the

inter-layer surfaces [7] or creeping at high temperature [8]. In order to
remedy the deficiencies of laminated PMs, functionally graded piezo-
electric materials (FGPMs) are developed.

Although size effect observed experimentally in the past two
decades [9–14], theoretical extension of conventional continuum
theory can be traced back to 1960s when couple stress theory (CST)
was proposed [15–17]. The theory received little attention due to the
inclusion of asymmetric couple stress tensor, giving rise to the
involvement of two non-classical constants for isotropic materials
[18,19]. The modified version of couple stress theory (MCST), pro-
posed by Yang et al. [20], removes this difficulty through introducing
an additional equilibrium equation. Consequently, only one new
constant, the so called material length scale parameter, appears in
the theory. Ma et al. [21–23], Tsiatas [24], Asghari et al. [25] and
Akgoz and Civalek [26] were pioneers to present size-dependent
models for bending, vibration and buckling of beams and plates.
Ashoori and Mahmoodi [27] developed microstructure-dependent
model of rectangular plates for bending analysis. Employing a meshless
method, Roque et al. [28] studied microscale Mindlin plates. In an
interesting work due to Ghayesh et al. [29], the nonlinear dynamics of
beams is investigated according to MCST in which Galerkin method
along with cylindrical arc-length technique are utilized. In the category
of circular plates, axisymmetric nonlinear bending of FGM plates is
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formulated by Reddy and Berry [30]. Moreover, a comprehensive study
on bending, free vibration and buckling of annular size-dependent
Mindlin plates composed of FGMs is presented by Ke et al. [31] and
Ansari et al. [32]. Very recently, Ashoori and Sadough [33] studied the
asymmetric buckling of annular microscale FG plates resting on an
elastic medium analytically. In the cases that curvilinear coordinates
are unavoidable, the procedure of derivation of governing equations as
well as associated boundary conditions is an extremely tedious task. In
order to fill this gap, Ashoori and Mahmoodi [34] derived MCST in
general curvilinear coordinates. It is noteworthy that such formulation
is of interest due to a variety of applications such as problems of
cylindrical and spherical cavity expansion in solids and the analysis of
asymptotic crack tip field.

In order to complete the mentioned sequential works on the
subject, the present work aims to provide an investigation of thermo-
electrical stability of circular size-dependent FGPM plates. On the basis
of virtual displacement principle, nonlinear governing equations and
boundary conditions of circular size-dependent FGPM plates under
thermoelectrical loading are extracted. These equations are then
exploited to study the nonlinear thermoelectrical bending and post-
buckling and also snap-through phenomenon due to lateral loading of
thermally preloaded plates. Geometrical nonlinearity is taken into
account in the sense of von-Karman nonlinearity. Each thermomecha-
nical property of FGPM plates is assumed to vary in the thickness
direction based on a power law form. Furthermore, two types of
thermal loading including uniform temperature rise and heat conduc-
tion through the thickness as well as two cases of boundary conditions,
including clamped and simply supported, are considered. Ritz finite
element method is employed to obtain discrete form of equilibrium
equations. The matrix representation of governing equations are solved
with the help of three different techniques. The response of circular
size-dependent FGP plates is either bifurcation type buckling or
nonlinear bending. In the cases that bifurcation type instability may
occur, the direct displacement control method is employed. In other
cases, the response is of nonlinear bending type to which standard load
control strategies are appropriate. Newton-Raphson method is there-
fore used for this purpose. It is clear that thermally deformed circular
size-dependent FGP plates with immovable in-plane boundary condi-
tion are susceptible to snap-through instability due to lateral loading
opposite to the direction of deflection. On the other hand, it is well
known that standard load control methods fail to trace nonlinear
equilibrium paths through limit points and thus path following
methods must be employed instead. Among the existing path following
solution methods, the cylindrical (pseudo) arc-length method is
utilized in this work. The numerical results of this study are first
justified by available data on open literature. Various parametric
studies are then presented to investigate the influence of involved
parameters.

2. Governing equations

Consider a solid circular plate composed of FGPMs of thickness h,
radius a, and referred to the cylindrical coordinates r θ z( , , ). The plate
is subjected to an external voltage Φ0, the field of temperature rise Θ,
and lateral load q. According to a power law for volume fraction of
constituents together with Voigt's rule, a typical property of the FGPM
plate, such as P, is written as
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in which Pl and Pu represent the corresponding properties of the lower
and upper surfaces, respectively, and k is the non-negative power law
index. All thermo-electro-mechanical properties encountered here are
assumed to be graded in the thickness direction according to (1).

Loading conditions and response of the plate are considered to be

axisymmetric in the present work. Moreover, the classical plate theory,
appropriate to the thin class of plates, is employed. Thus the displace-
ment field of the FGP plate is
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Similar to the displacement field, electric potential is required to be
lumped in the thickness direction. Thus the electric potential distribu-
tion is assumed to be [35,36]
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where ϕ r( ) denotes the electric potential of mid-plane to be deter-
mined. Care must be taken that the above form satisfies closed-circuit
electric conditions on the upper and lower surfaces.

Taking into account von-Karman assumptions, the nonzero com-
ponents of strain and curvature tensors are
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in which w* denotes initial geometrical imperfection. On the fact that
the electric field equals to the negative gradient of the electric potential,
(3) is rewritten as
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Within the linear framework and also after the appropriate
replacement of Lame constants by the coefficients of plane stress state,
the constitutive relations for a material with z-axis polarization are
given by
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where μ is symmetric couple stress tensor and ℓ represents the so called
material length scale parameter. Furthermore, α, e31, ϵij and p denote
the coefficient of thermal expansion, piezoelectric modulus, dielectric
coefficients and pyroelectric constant, respectively.

In order to extract governing equations, the static version of virtual
displacement principle is utilized which for size-dependent FGPM
plates occupying region of volume subjected to thermoelectrical
loading states that the variation of electric total Gibbs energy equals to
the virtual work done on the plates, i.e.,

δ δ= (7)

in which
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Substitution of (4) and (8) into (7) yields
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