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A B S T R A C T

The paper deals with estimating load capacity of thin-walled composite beams with C-shaped cross-section
subjected to pure bending. The discussed beams were made of eight-layer GFRP laminate. The analysis have
been performed on six ply systems. To designate load capacity of analyzed structures the ANSYS® program based
on finite element method were employed. The experimental tests were conducted. Estimations of load capacity
were based on the following failure criteria: Inverse of Tsai-Wu, Hoffman and criterion of maximum stress
reduced to fiber direction. Based on the performed experimental and numerical studies it has been concluded
that the largest convergence of numerical and experimental results was obtained with the implementation of the
criterion of maximum stress reduced to the fiber direction. After exceeding the compressive strength or tension
strength in the direction of the fibers the composite beams were characterized by a high stiffness degradation,
leading to rapid destruction of the structures.

1. Introduction

The thin-walled structures are made of steel [1–5], composites
[6,7], reinforced concrete [8,9], and nowadays more frequently as
hybrids [10], or even as steel elements reinforced locally by composite
materials [11]. Among the wide area of potential applications of thin-
walled structures mainly sports, automotive and aerospace industries
should be indicated. In the world literature there are many papers on
the stability, postbuckling behavior and load carrying capacity of
composite structures in which these issues were solved using analytical,
numerical and analytical-numerical methods [12–15]. The results of
numerical calculations published in the papers of various authors were
confronted with the results of experimental studies [16–18]. Laminates
are currently the most common type of composites and for many years
have been applied in girder structures of aircraft wings [19], helicopter
blades [20] or girders of wind turbine blades [21].

The presented work focuses on estimating the load carrying capacity
of thin-walled composite beams subjected to pure bending. Particular
attention is paid to determine the loads and the forms of failure for all
considered beams. In the authors’ opinion, there are not enough papers
devoted to the results of experimental studies on load-carrying capacity
and the failure range of composite profiles subjected to operating loads
in the world literature. Therefore, it has been decided to analyzed and
describe the failure of thin-walled laminate structures. The thin-walled
channel section profile made of an epoxy resin laminate reinforced with

glass fibers (GFRP) has been taken into consideration. The results
presented in this paper concern the six arrangements of layers. Both the
failure values of load and form of failure determined from numerical
studies have been compared with experimental results.

2. The analyzed failure criteria

In opposition to isotropic materials, for which a well known
strength hypothesis e.g. Huber–Mises–Hencky hypothesis or maximum
shear stress hypothesis can be employed, defining the load carrying
capacity of orthotropic structure is a much more complex task. This is
due to fact that principal directions of stress and strain tensors are not
coaxial. Moreover, in the case of isotropic materials analysis, to
determine the safe working range of structure, knowledge of the certain
values of maximal stress, which are appointed in uniaxial tensile tests is
sufficient. For orthotropic material in a plane stress state it is necessary
to know until five material constants: tensile strength along the fibers
direction T1, tensile strength in the transverse direction to fibers T2,
compressive strength along the fibers direction C1, compressive
strength in the transverse direction to fibers C2 and the shear strength
in the plane of the principal axes of orthotropy S12. The precise number
of failure criteria formulated for composite materials is virtually
impossible to determine because still appear in the world literature
new proposals. In the paper written by A. Muc [22] it can be found that
the number of different failure criteria for composite materials may
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even be several hundred.

2.1. The criterion of maximum stress

Maximum stress criterion assumes that the condition for safe state of
structure is that the stresses in the principal directions of the material
orthotropy (1–2) are lower than the corresponding strength (index “1”
denotes the fibers direction and index “2” – direction transverse to the
fibers direction):

C σ T C σ T S σ S− < < , − < < , − < <1 1 1 2 2 2 12 6 12 (1)

where:
C1, T1 - compressive and tensile strength in direction 1, respec-

tively.
C2, T2 - compressive and tensile strength in direction 2, respectively

(orthogonal to direction 1).
S12 - shear strength in the plane of orthotropy (1–2).
If all six inequalities (1) [23] are satisfied then, according to

maximal stress criterion the analyzed material is not destroyed.
However, even if one of these inequalities is not satisfied then the
material is destroyed. A distinct disadvantage of this criterion is fact
that this description does not take into consideration the coupling
between the normal and shear stresses. Nevertheless, in engineering
practice criterion of maximum stress is one of the most popularized
failure criteria, as evidenced by its application in many standards for
composite structures [24].

2.2. The criterion of maximum stress reduced to fiber direction (MSRFD)

The criterion of maximum stress reduced to fiber direction (MSRFD)
determines the exhaustion of load carrying capacity by exceeding the
acceptable stresses solely in the direction of the fibers. The acceptance
of this principle is equivalent with a statement that despite of the
devastation in the matrix, a beam is not subject to destruction, because
still the loads applied to the structure are carried by the fiber. The
described condition is therefore in fact a modification of the criterion of
maximum stress, which reduces the area of strength analysis only to
study the behavior of layers in the direction of the fibers. Destruction
condition can be formally written in the form of the following
inequality:

C σ T− < <1 1 1 (2)

For the purpose of the observation maps of the strength factor f
distributions, inequalities (2) have been defined as in Hashin's criterion
in the following form (3) i (4):
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2.3. Interactive criteria

In 1971, Tsai and Wu proposed the interaction strength criterion,
which in their description connected the correlation between the
normal and shear stresses in complex stress. In the Voight's notation,
the criterion of Tsai-Wu describing the destruction in a three-dimen-
sional state of stress has the following form (5) [25]:

F σ F σ σ i j+ = 1 , = 1, 2,…,6i i ij i j (5)

Due the fact that each considered wall of composite beams was in
plane stress, Eq. (5) can be written in the following form (6):
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The meaning of parameters T1, T2, C1, C2, S, is analogous to the
quantities described for the criterion of maximum stress. As it can be
seen in the case of plane stress, virtually all parameters at normal and
shear stresses in the formula (6) can be determined in uniaxial
compression, tension or shear tests. The exception in this case is the
parameter F12, whose interpretation is the interaction between the
normal stresses σ1 and σ2. For the set values of the stresses σ1 and σ2,
this coefficient can be determined in a biaxial test. Universal determi-
nation of this parameter is currently still an unresolved issue. The value
of parameter F12 is characterized by variability in different ratio of
stress σ1 to σ2, it also changes as a result of the character acting pairs of
stresses (biaxial tension, biaxial compression, tension with compres-
sion). Out of the six Eq. (7) a characteristic element of the Tsai-Wu
criterion is the declaration of the parameter F12. Despite the identity of
the mathematical descriptions for most of the interactive criteria,
individuality in the definition of the coefficient F12 constitutes the
starting point for many definitions of failure criteria for orthotropic
materials well-known in strength of materials. For further numerical
analyses has been the Hoffman criterion selected [26], where:
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Implemented in the numerical program, the Inverse of Tsai-Wu
criterion described as the strength factor f, is written in the following
form [37] (9):
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The Tsai-Wu coupling coefficients were assumed as "−1" and it
should be noted that the compression strength in (2) and (3) are here
positive numbers (cf. Table 2). Numerical values of load carrying
capacity of individual layers were determined by specifying two
successive load steps Mi and Mi+1 between which the conditions of
individual criteria are exceeded. This situation is accompanied by a
change of strength factor values from the value fi<1 to the value fi+1

>1. Applying linear interpolation between successive load steps Mf

point was determined that in light of the assumptions defined the
destruction of the first layer (lower estimate), or the destruction of all
the layers in the laminate (upper estimate). The value of the failure load
(bending moment) can be described as the following formula:
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where:

Table 1
Assumed autoclaving parameters for the manufacturing of composite laminate structures.

Curing temp. Heating/cooling Curing time Pressure Vacuum
[°C] rate [°C/min] [min] [MPa] [MPa]

100 1 60 0.4 0.085
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