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A B S T R A C T

The parametric instability of heterogeneous orthotropic truncated conical shells under time dependent axial
compressive load on the basis of Donnell shell theory is investigated. The dynamic basic equations are reduced
into a Mathieu-Hill type differential equation describing the instability of heterogeneous orthotropic truncated
conical shells using Galerkin's method. The backward and forward excitation frequencies are determined by
using Bolotin's method. A comparison with the previous studies has been developed in order to validate the
present results. The effects of axial load factors, heterogeneity, orthotropy, as well as the variation of the
characteristics of the conical shell on the backward and forward excitation frequencies are studied in detail.

1. Introduction

Among the shell structures, the conical shells stand out sharply from
the other structural forms and are widely used in the aerospace, marine
and other industries. As a result, much research has been devoted to the
study of the static and dynamic characteristics of conical shells at
various loading conditions. The numerical analyses of the mechanical
response of conical shells under periodic loads are a recurrent topic in
these specific studies. The parametric resonance of conical shells caused
by periodic loading can occur when the values of load is much smaller
than the static buckling load. So the shell components are designed to
withstand a static buckling fail in a periodic loading. In addition, the
instability of shell structures occurs in the forcing frequency range,
leading rather than at a single value. The parametric response of conical
shells under pulsating pressure has been investigated since the first
paper published by Kornecki [1]. Following this study, the parametric
vibration or instability problems of homogeneous isotropic conical
shells with periodic loads have been carefully investigated [2–8]. Sahu
and Datta [9] presented an extensive bibliography of works on the
dynamic instability of plates and shells from 1987 to 2005.

The number of works belonging to parametric responses of aniso-
tropic shells is relatively scarce and the majority of these studies related
to composite cylindrical shells. One of the first study on the dynamic
instability of anisotropic shells is given by Goroshko and Emelyanenko
[10]. Bert and Birman [11] studied the parametric instability of thick
orthotropic shells using higher order shell theories. Argento [12]
studied the dynamic stability of composite circular clamped shells

under axial and torsional loading using the Donnell's linear theory.
Argento and Scott [13,14] determined the instability regions of a
composite (graphite/epoxy) circular cylindrical shell subjected to
periodic loads using a perturbation technique. Ng and Lam [15]
presented the dynamic instability of laminated composite cylindrical
shells subjected to periodic axial loads. Jansen [16] developed an
analytical simplified approach in order to simulate dynamic step and
periodic axial loads acting on the anisotropic shells. Mallon et al. [17]
studied orthotropic circular cylindrical shells using Donnell's shell
theory and they also presented experimental results. Ovesy and Fazilati
[18] investigated the parametric instability regions of laminated
composite plate and cylindrical shells subjected to non-uniform in-
plane axial end-loadings. Dey and Ramachandra [19] analyzed static
and dynamic instability of composite cylindrical shell panels subjected
to partial edge loading. Panda et al. [20] presented hygrothermal
response on the parametric instability of delaminated bidirectional
composite flat panels.

Recently, material scientists have shown that the material efficiency
can be significantly improved if their composition and structure are
varied to meet their functional requirements. Such heterogeneous
materials have engineered gradients of composition or structure, which
offer superior performance over conventional homogeneous materials.
The shells made of heterogeneous materials are widely used in space
vehicles, aircrafts, nuclear power plants and many other engineering
applications. Therefore, some studies have been conducted to investi-
gate the parametric vibrations of heterogeneous shells. A review of the
literature shows that the great majority of the investigations have been
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limited to the parametric vibration or dynamic instability behaviors of
heterogeneous isotropic or functionally graded (FG) isotropic shells.
The first study on the dynamic instability of heterogeneous isotropic
truncated conical shells with variable modulus of elasticity, under
compressive axial forces which are periodic in the time, using Donnell
shell theory examined by Massalas et al. [21]. In recent years, the
development of technology has greatly simplified the production of
functional graded materials (FGMs), and this contributed to the
creation of noteworthy work on the instability of conical shells
consisting of FG isotropic materials [22–33]. It is noted that the number
of studies on the free vibration problems of heterogeneous orthotropic
and isotropic shells is sufficiently greater than the parametric vibrations
in the literature [34–48].

A literature search revealed that the study of parametric vibration of
heterogeneous orthotropic truncated conical shells under the time-
dependent periodic axial load is absent. The purpose of this study is to
examine this issue in detail.

2. Basic relations

Assume that the heterogeneous orthotropic truncated conical shell
with the thickness h, the slant length L , the semi-vertex angle γ , the
small and large mean radii R1 and R2, and the distances from the vertex
to small and large bases S1 and S S L= +2 1 , respectively, is subjected to
uniformly distributed edge forces, as illustrated in Fig. 1, with the
resultant axial load:

N N t N N Ωt N N= − ( ) = − − cos( ), = 0, = 0S t θ Sθ
0

0
0 0 (1)

where N N,S θ
0 0 and NSθ

0 are the membrane forces for the condition with
zero initial moments, N0 is the uniform static axial load, Nt is the
amplitude of the time dependent periodic axial load, while the
frequency Ω is the frequency of excitation in radians per time unit
and t is a time variable.

The curvilinear coordinate system is defined as OSθz( ), where S and
θ coincide with generator and circumferential directions, respectively,
and z is normal to the Sθ surface and its direction is inwards normal of
the heterogeneous orthotropic truncated conical shell.

The material properties of heterogeneous truncated conical shells
are assumed to have in-plane orthotropy and transverse heterogeneity.
The orthotropic material properties vary c direction of the truncated
conical shell and mathematically formulated as [34,39].

E Z ϕ Z E E Z ϕ Z E G Z ϕ Z G Z z h( ) = ( ) , ( ) = ( ) , ( ) = ( ) , = /1 01 2 02 0 (2)

where E01 and E02 are the Young's moduli in the S and θ directions,
respectively, G0 is the shear modulus and Z is the normalized thickness
coordinate, Z−1/2 ≤ ≤ 1/2. ϕ Z( ) is continuous heterogeneity function
and explanation about it is given in the discussion part in detail. The
density, ρ0, and Poisson's ratios, ν12 and ν21, through the thickness
coordinate are assumed to be constant. In addition, Young's moduli and
Poisson's ratios are related by the following expression, ν E ν E=21 01 12 02
[49].

According to the classical shell theory (CST), the stress-strain
relations for heterogeneous orthotropic truncated conical shells are
given as follows:
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where σ σ σ, ,S θ Sθ are the stresses, eS, eθ, eSθ are the strains, θ θ γ= sin1 , w
is the displacement of the middle surface in the normal direction,
positive towards the axis of the cone and assumed to be much smaller
than the thickness and the quantities for the heterogeneous orthotropic
materials, K i j, ( , ) = (1, 2, 6)ij , are defined as [39]:
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The force and moment resultants of shells are expressed by the
following relations [49]:
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The Airy stress function, Ψ S θ t( , , ), is introduced by the following
relations [50]:
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3. Basic equations

The governing differential equations for dynamic stability of
truncated conical shells modified for the heterogeneous truncated
conical shells can be written as [39,50]:
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Fig. 1. Heterogeneous orthotropic truncated conical shell under time dependent periodic
axial load.
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